
FUNDAMENTOS DA COMPUTAÇÃO

Visão geral

Esta unidade

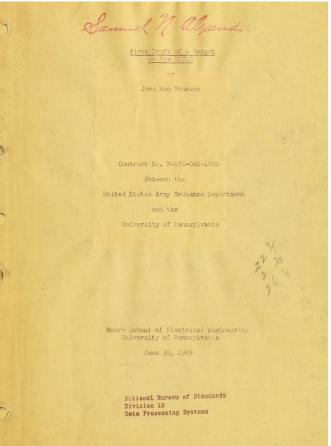

Representação de dados

Imagem: Los Alamos National Laboratory, na Wikipedia (https://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif)

John von Neumann ("von Neumann")

- Binário
- Arquitetura de von Neumann
- Programação linear
- Computação científica
- Outras contribuições: matemática, física, engenharia, ...

First Draft of a Report on the EDVAC (30/06/1945)

Primeira descrição do projeto de um computador que usa o conceito de programa armazenado.

Imagem: Smithsonian Libraries and Archives, no Internet Archives (https://archive.org/details/firstdraftofrepo00vonn/)

Por que a representação é tão importante? input output (solução) (problema) algoritmo input output (problema) (solução) (82, 44)algoritmo Unário mdc(82, 44)Binário Octal Números Decimal Hexadecimal ASCII Texto Representação Unicode de Dados **RGB** input output Cores (problema) (solução) CMYK 33 $\Rightarrow 5.74456\dots$ algoritmo Imagens Áudio Vídeos

Por que a representação é tão importante?

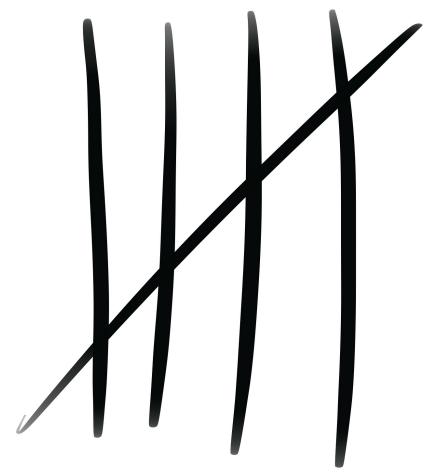


Imagem: StL20, no Pixabay (https://pixabay.com/illustrations/to-match-opinion-poll-count-six-6700969/)

Imagem: AlLes, no Pixabay (https://pixabay.com/photos/hand-palm-fingers-one-two-three-4594071/)

Sistema unário: apenas um único algarismo, o "1"

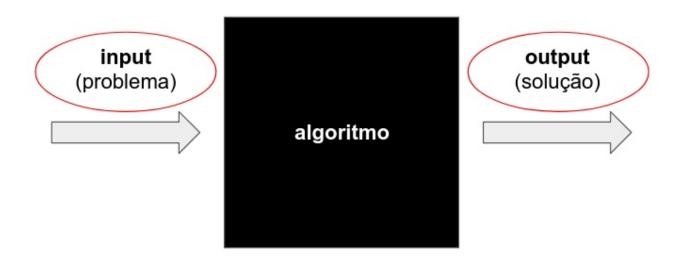
Quantos números podemos representar com uma mão?
É possível fazer melhor? É possível representar mais com apenas uma mão?

Por que a representação é tão importante?

 $Imagem: AlLes, no\ Pixabay \\ (https://pixabay.com/photos/hand-palm-fingers-one-two-three-4594071/)$

Imagem: AlLes, no Pixabay (https://pixabay.com/photos/hand-palm-fingers-one-two-three-4594071/)

Sistema binário: dois algarismos, o "0" e o "1"


Quantos números podemos representar com uma mão?

Quantos números podemos representar com duas mãos?


Por que a representação é tão importante?

Ao mudar a representação do problema:

- Podemos fazer mais com menos
- Podemos utilizar algoritmos mais adequados
- Temos mais flexbilidade da entrada e saída

Representação de dados: números

Noção intuitiva:

- Sistema unário
- Sistema decimal
- Sistema binário

Por que binário?

- Os 0s e 1s não existem, são abstrações!
- Transístores, campo magnético, sulcos, luz...

Formalização:

- Sistemas decimal, binário, octal e hexadecimal

Unidades de medida:

- Decimal
- Binário

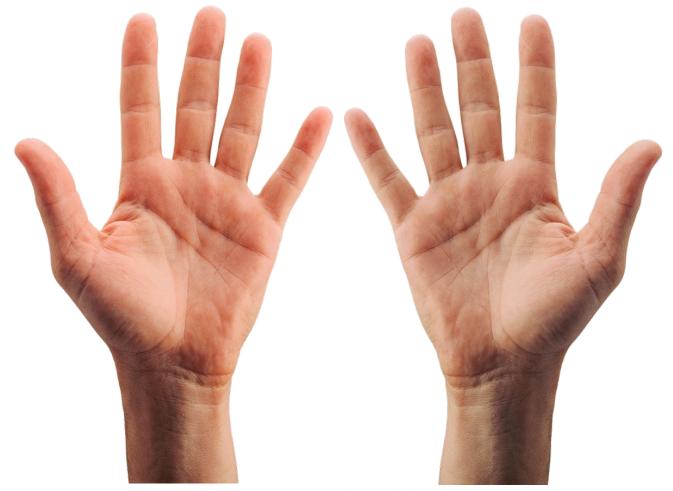
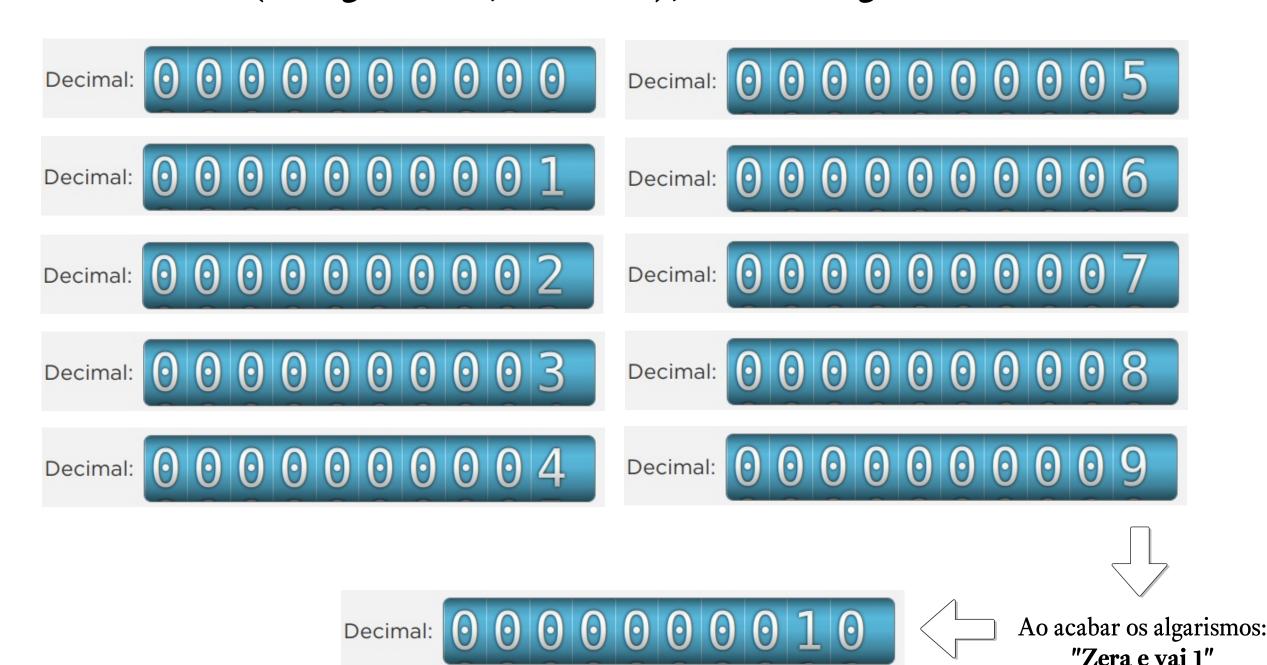
Imagem: StL20, no Pixabay (https://pixabay.com/illustrations/to-match-opinion-poll-count-six-6700969/)

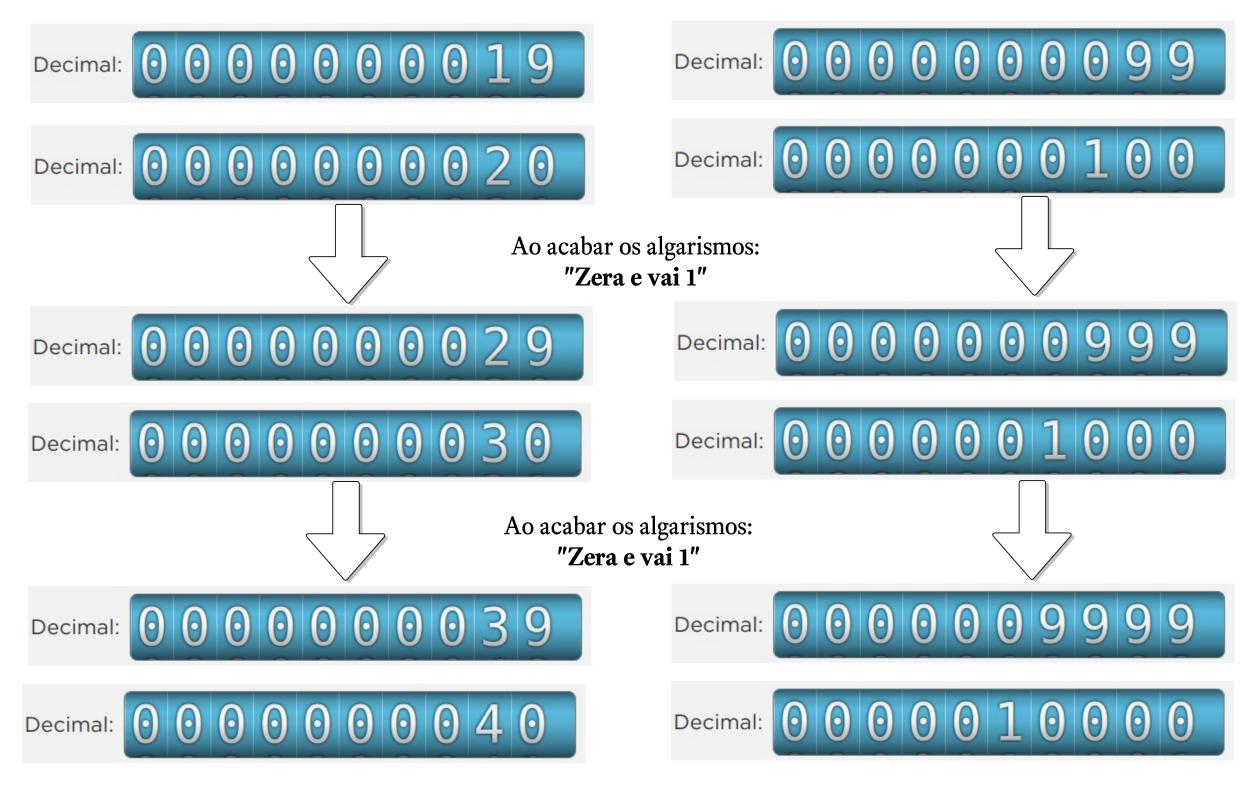
 $Imagem: AlLes, no\ Pixabay\ (https://pixabay.com/photos/hand-palm-fingers-one-two-three-4594071/)$

Sistema unário: apenas um único algarismo, o "1"

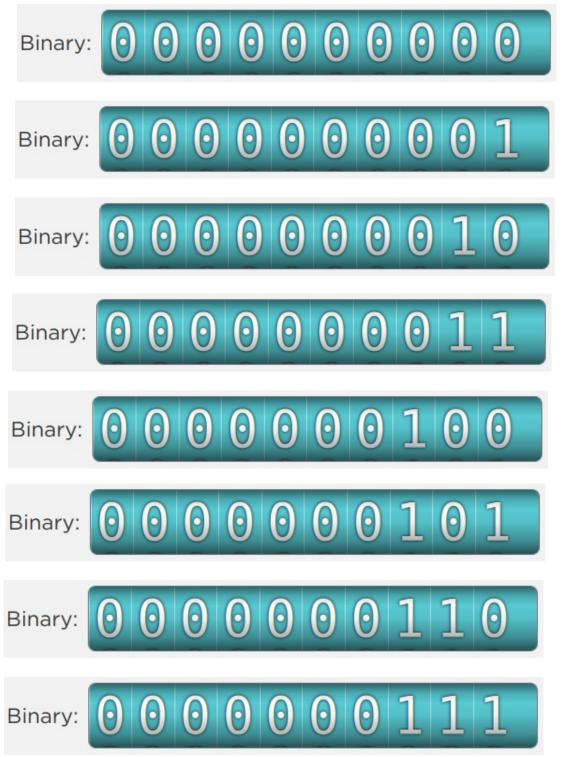
- Muito limitado para nossos propósitos

(https://pixabay.com/photos/hand-palm-fingers-one-two-three-4594071/)

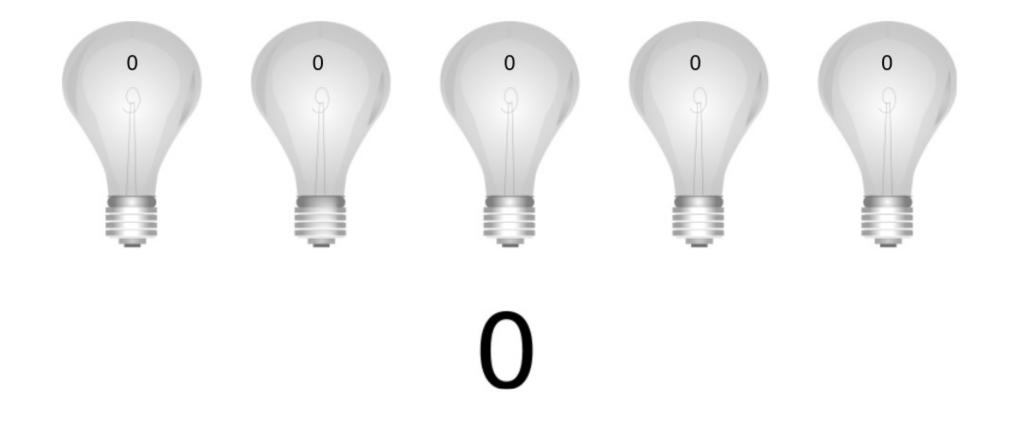

Imagem: AlLes, no Pixabay
(https://pixabay.com/photos/hand-palm-fingers-one-two-three-4594071/)

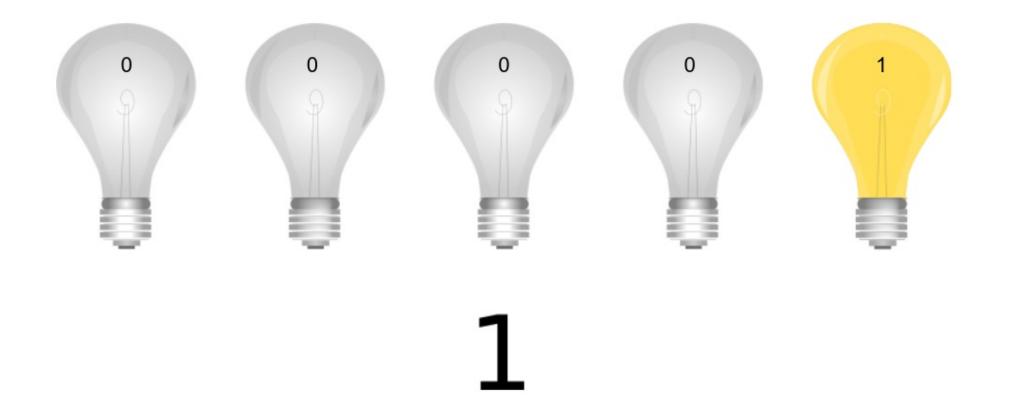
Sistema binário: dois algarismos, o "0" e o "1"

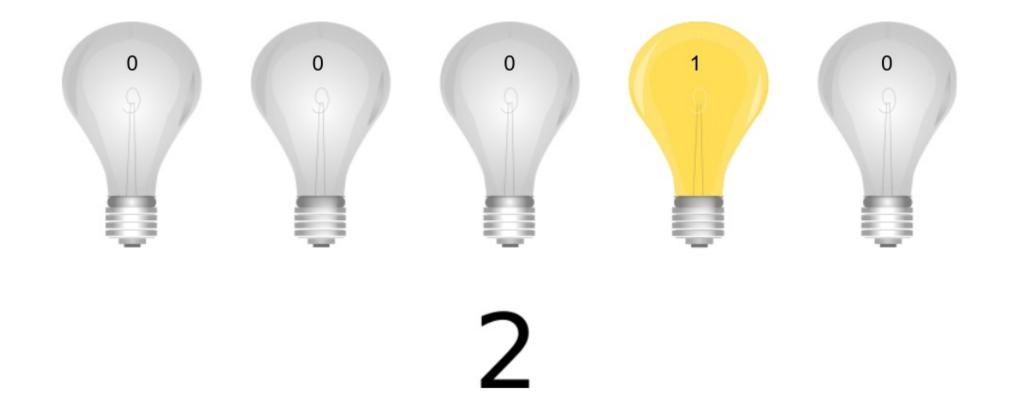

- Os computadores "falam" binário!

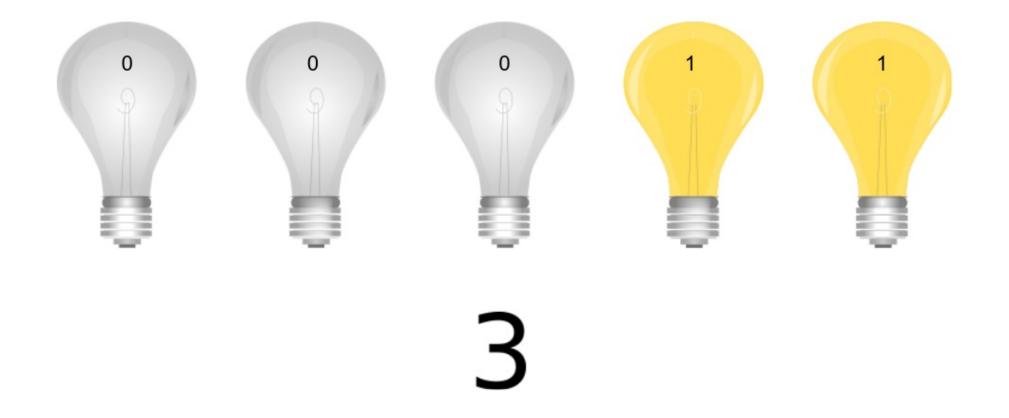
O sistema binário funciona como um hodômetro de um carro. Normalmente, com o sistema decimal (10 algarismos, do 0 ao 9), temos o seguinte:

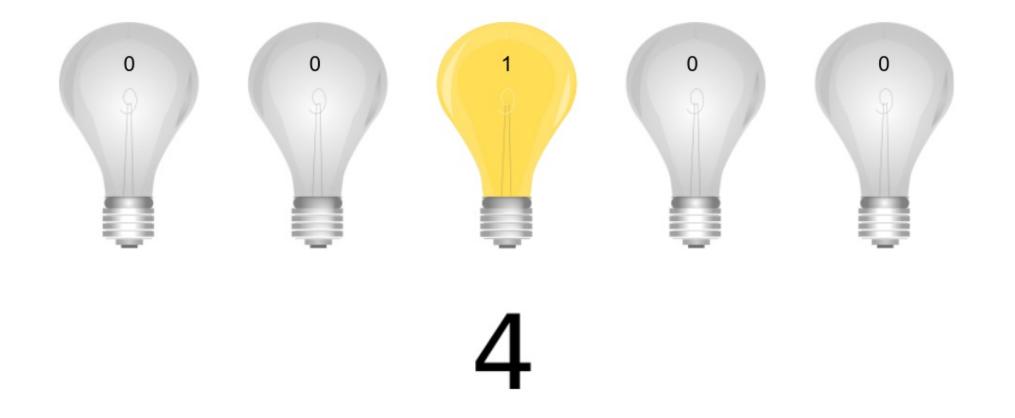
Com o sistema binário (2 algarismos, do 0 ao 1), temos o seguinte:

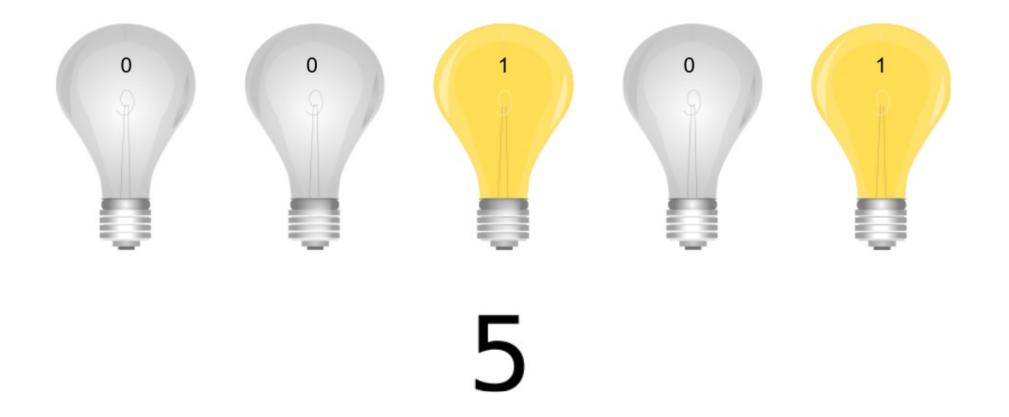

Ao acabar os algarismos: "Zera e vai 1"

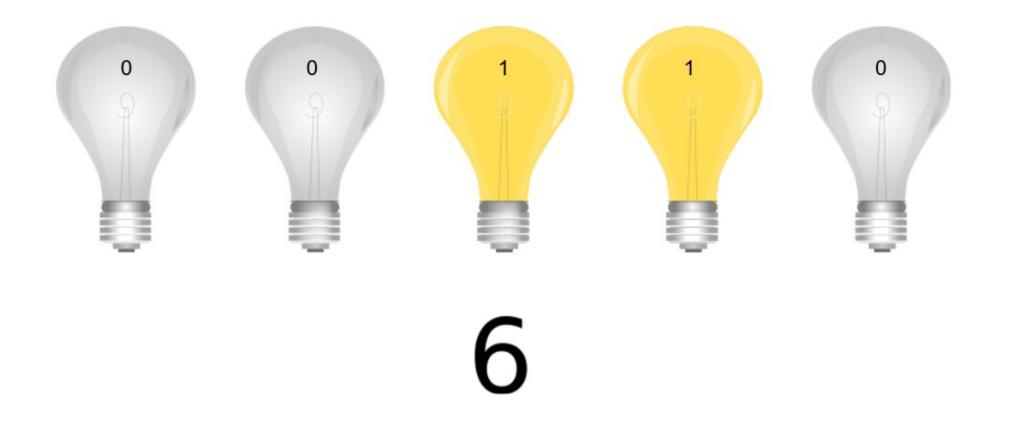

Cada "casa" para os algarismos é chamada de "bit" (binary digit).

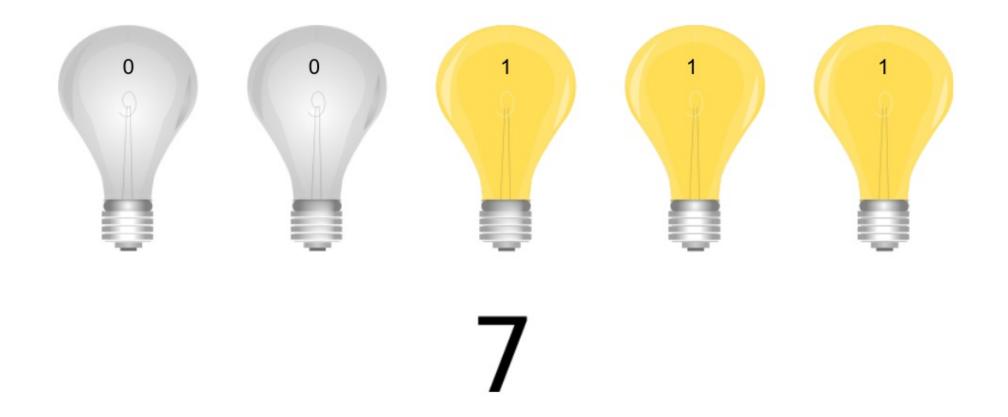

Nesse hodômetro podemos armazenar números binários com 10 bits. Sendo assim, o maior número binário que pode ser armazenado é o



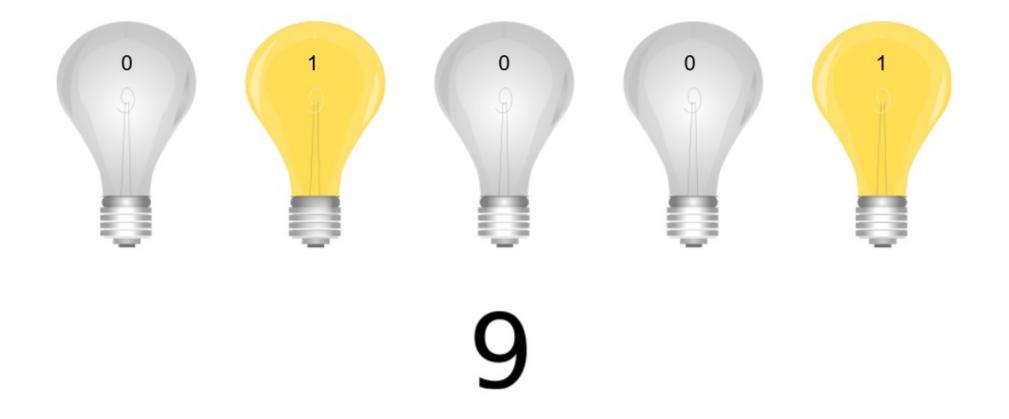

que equivale a 1023 em decimal.

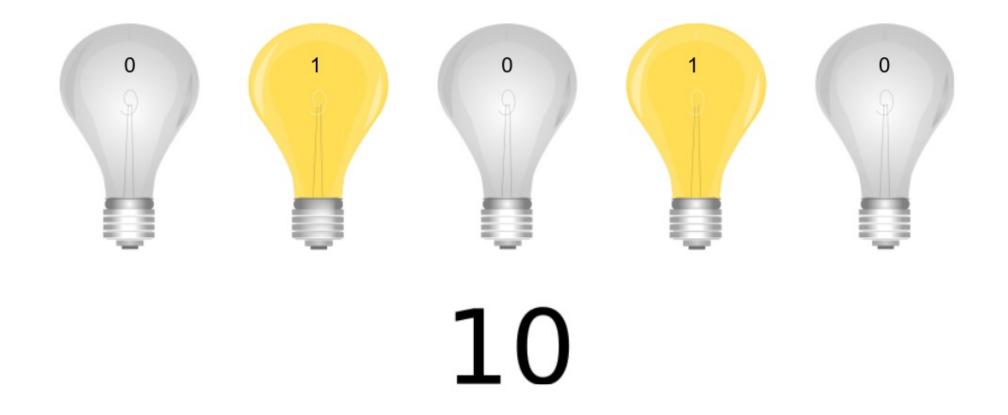


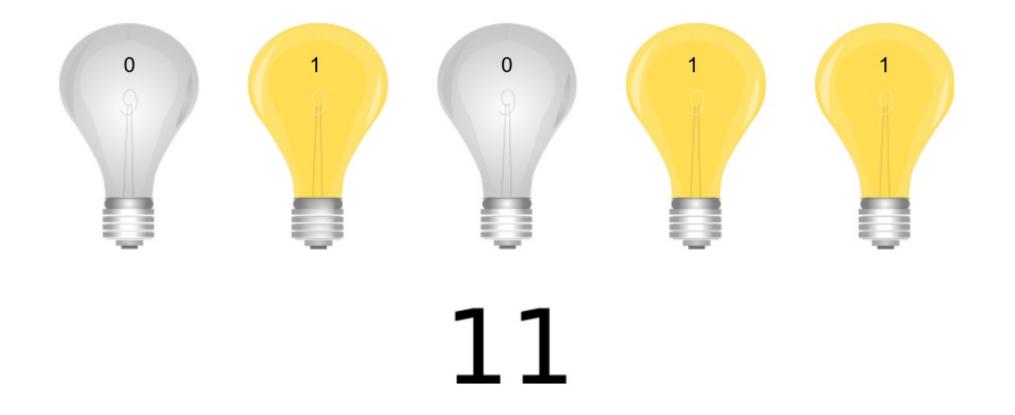


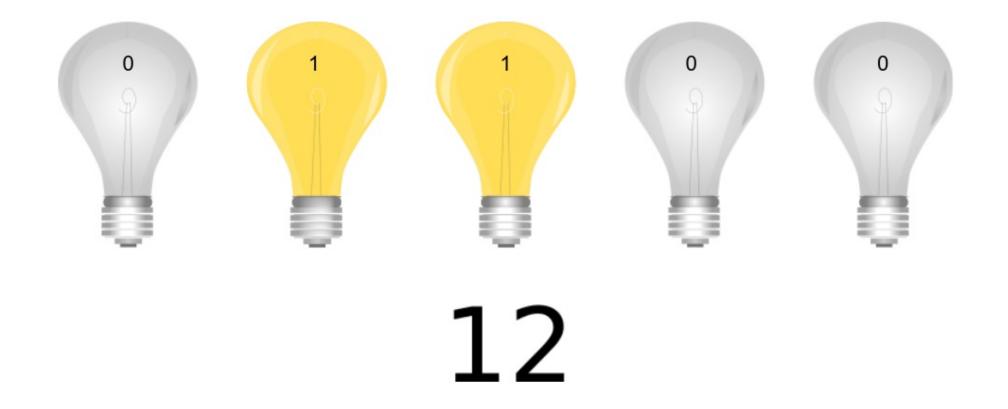


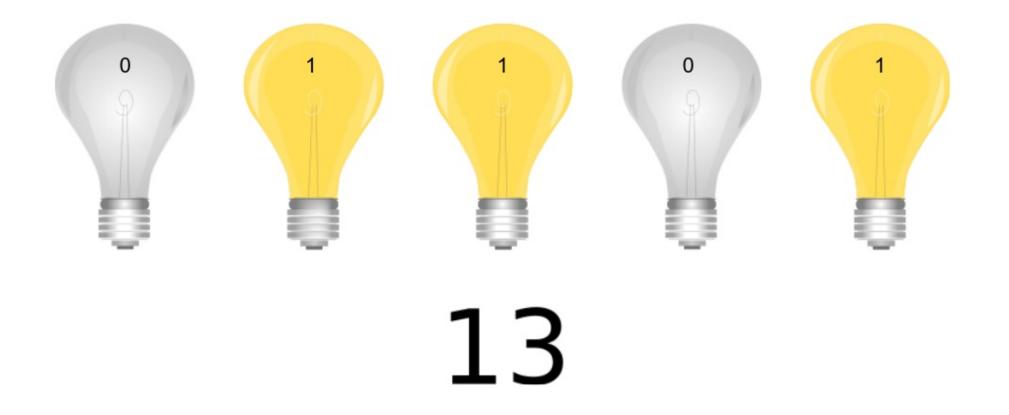


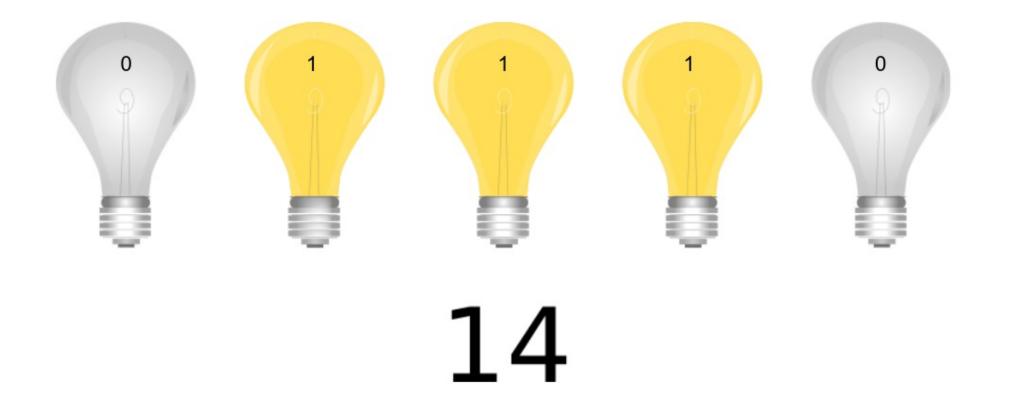


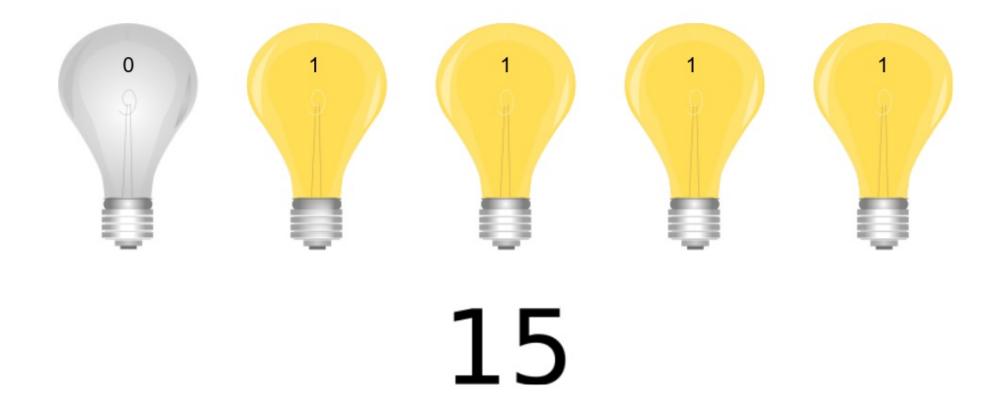


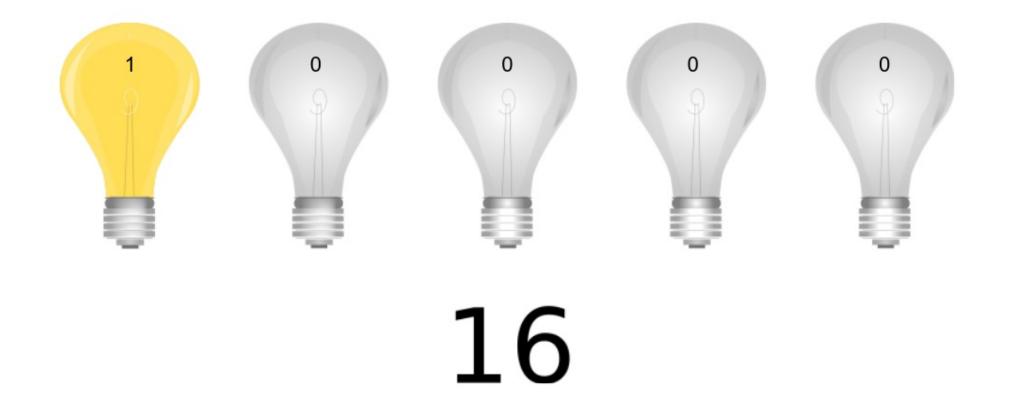


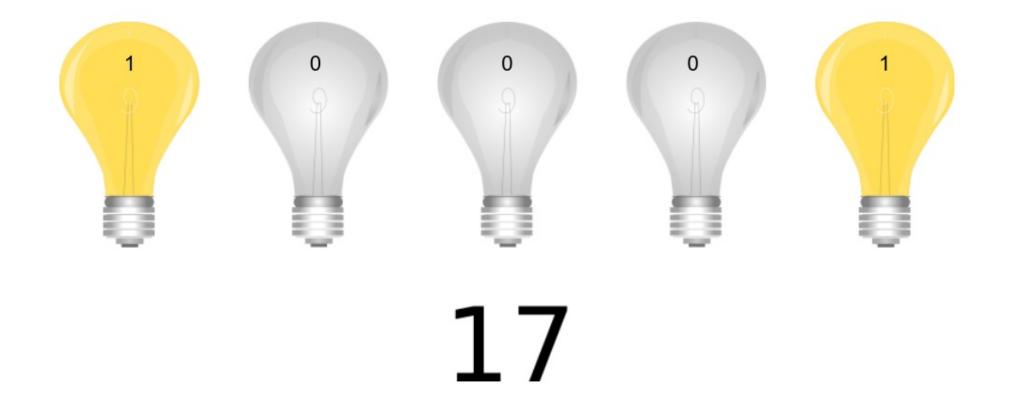


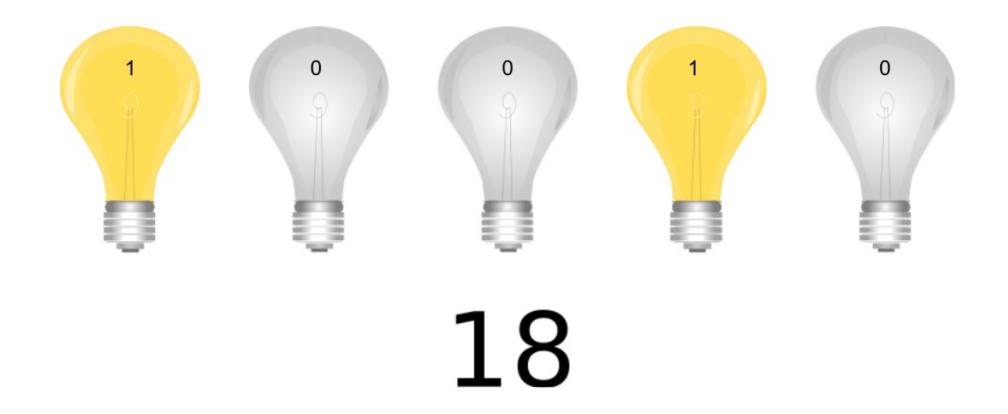


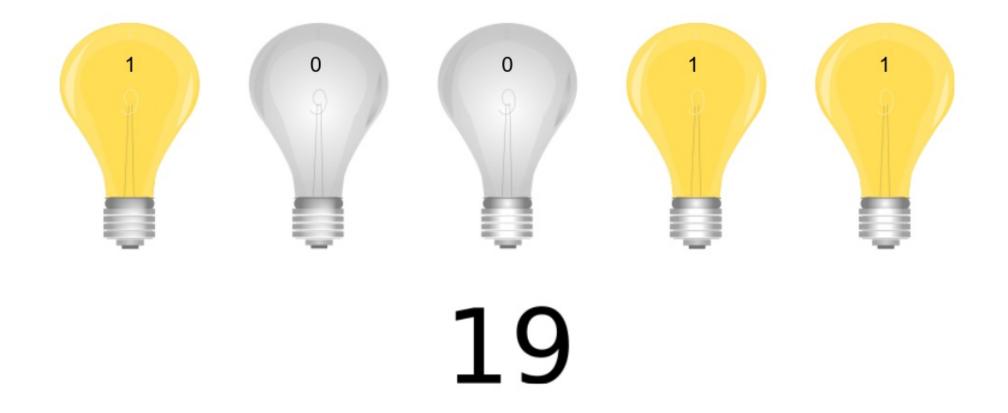


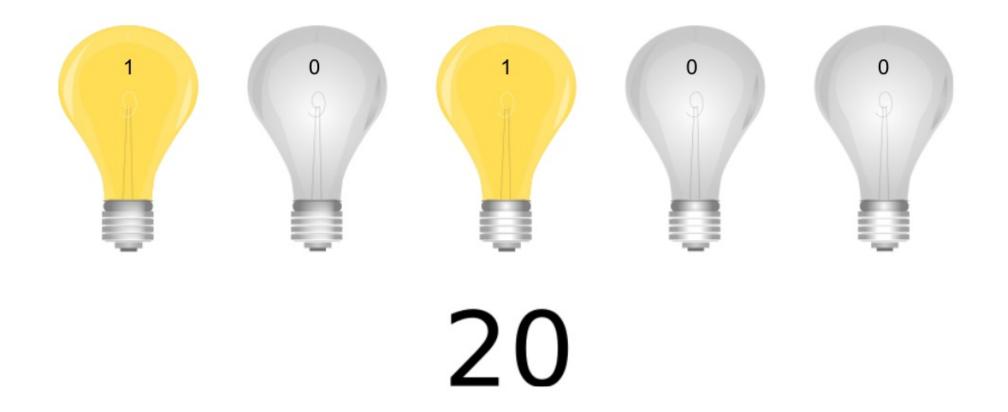


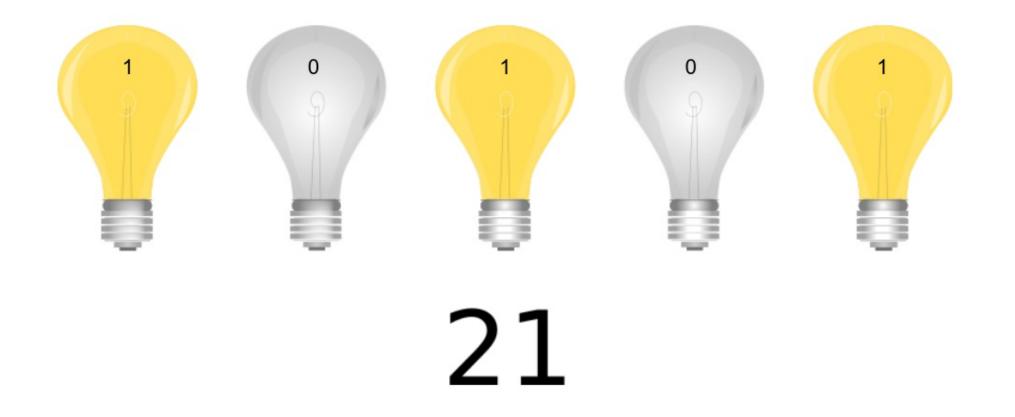


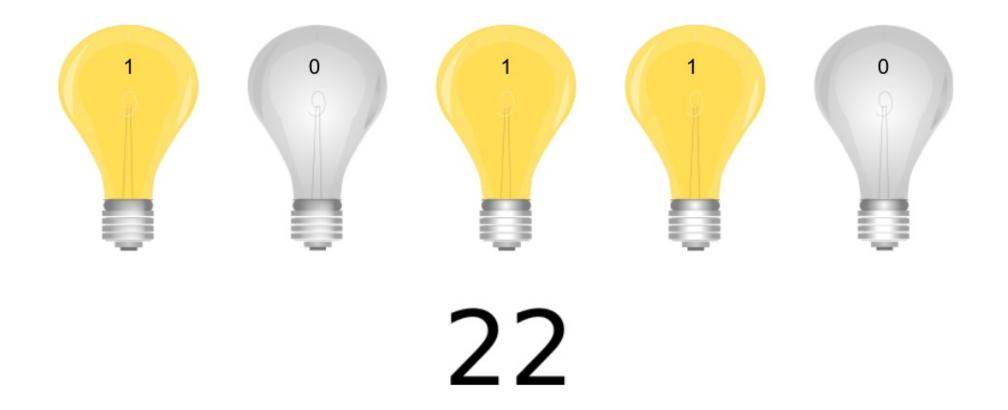


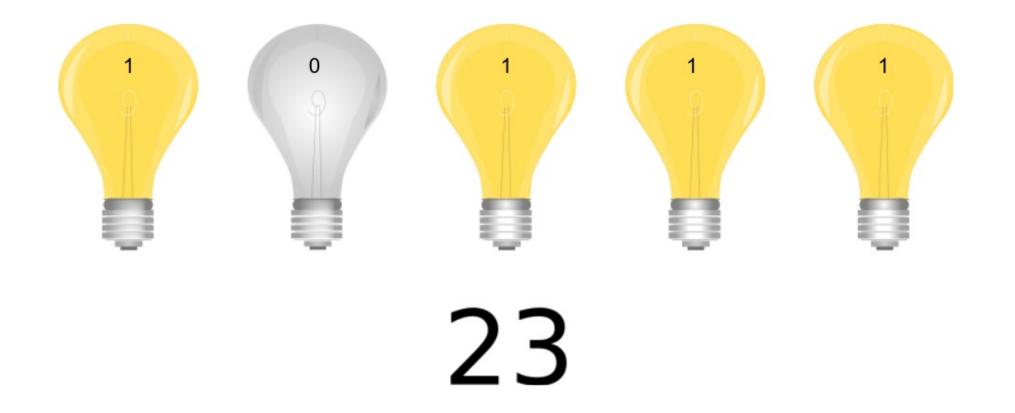


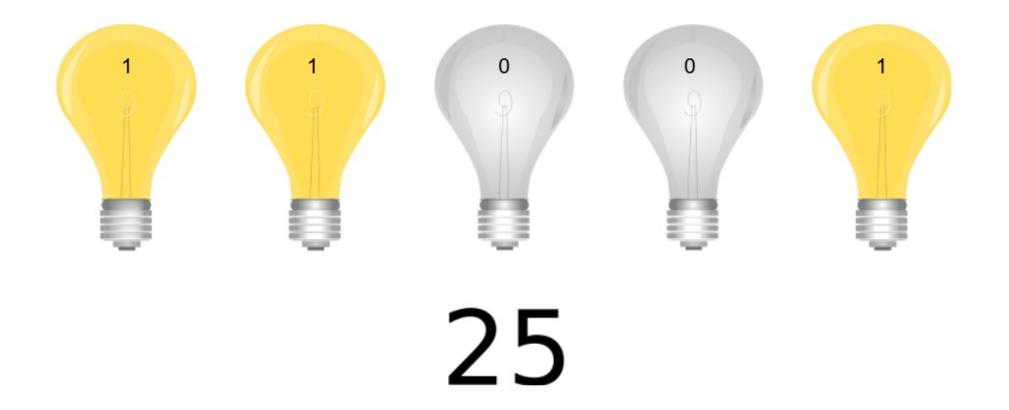


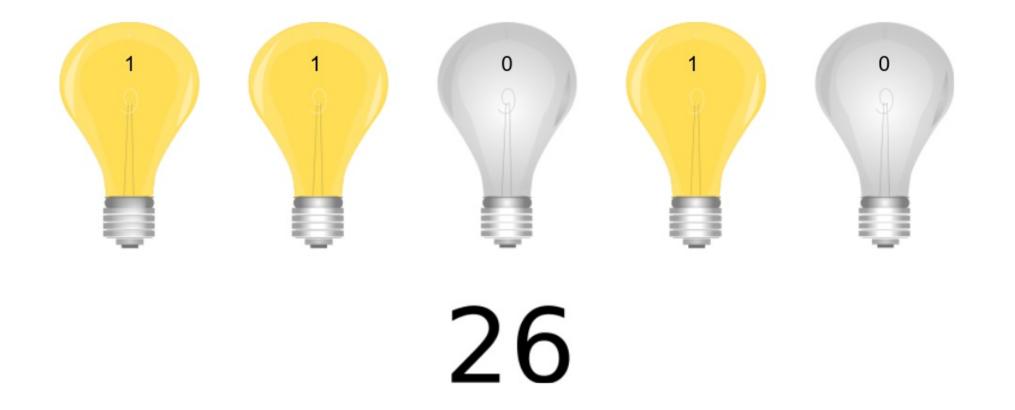


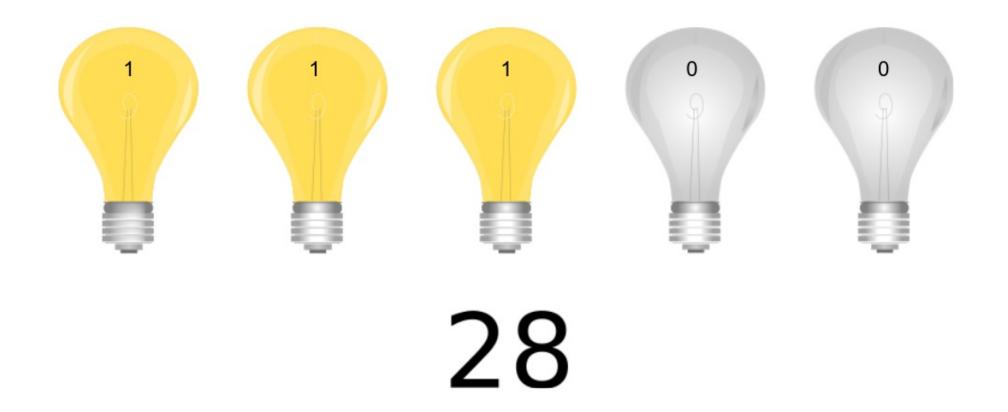


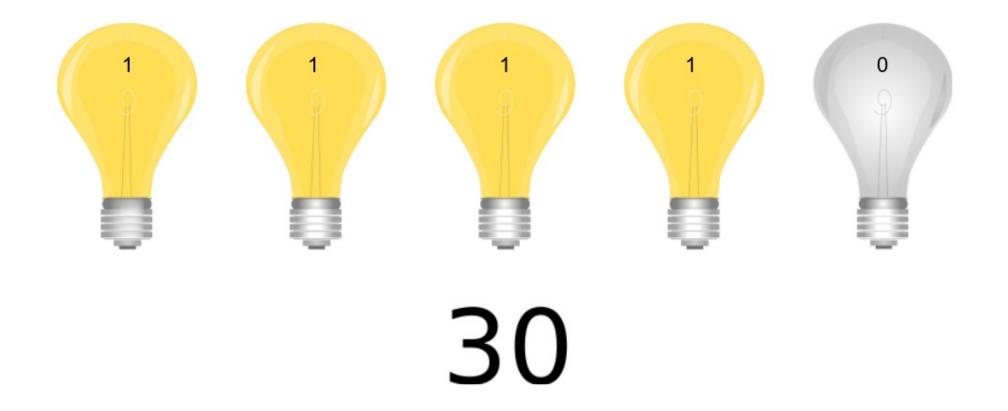


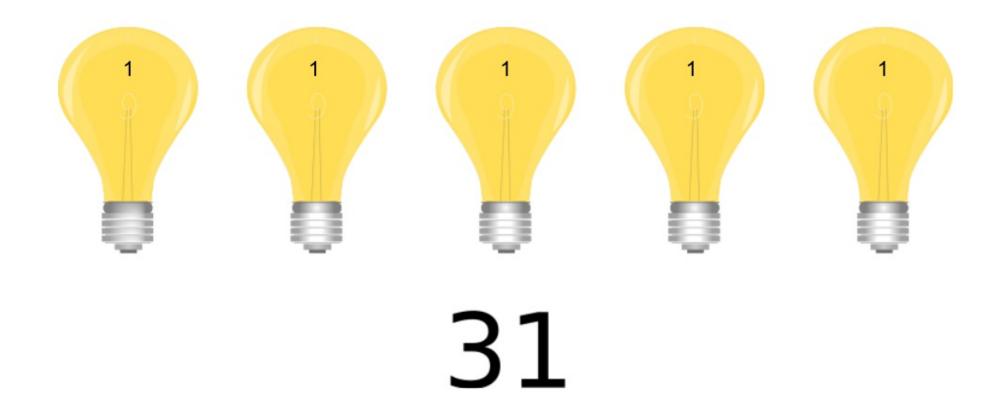


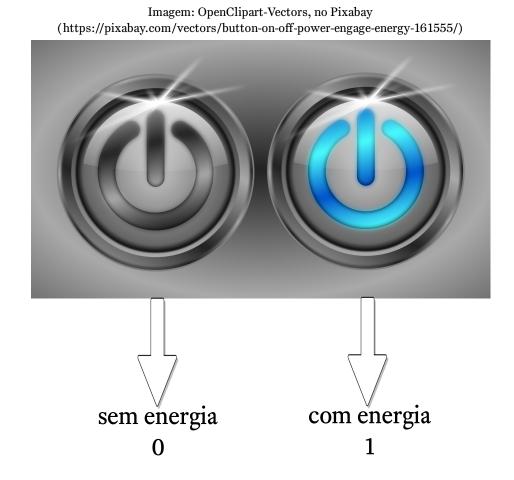












Com 5 bits podemos representar 32 números, do 0 ao 31. E se quiséssemos representar o número 32 ou o 33?

Por que os computadores "falam" binário?

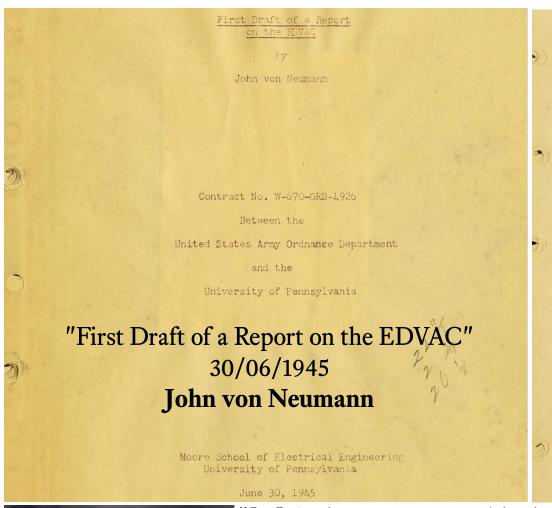


Imagem: JCamargo, no Pixabay (https://pixabay.com/vectors/computers-cell-phone-notebook-2690565/)

Por pura conveniência! É mais fácil representar apenas 2 algarismos (0 e 1) do que 10 algarismos!

Por que os computadores "falam" binário?

Let us now consider certain functions of the first specific part: the central arithmetical part CA. The element in the sense of 4.3, the vacuum tube used or gate, is an all-or-none device, or at least it pulses) will transfer it from one equilibrium into another. These are than two equilibria are disproportionately more involved. Thus, whether the tubes are used as gates or as triggers, are also two valued. This suggests the use of the binary system.

are equally all-or-none elements. It will appear that they are quite useful for all preliminary, orienting considerations on vacuum tube systems (cf.). It is therefore satisfactory that here too, the natural arithmetical system to handle is the binary one.

5.2 A consistent use of the binary system is also likely to simplify the operations of multiplication and division considerably. Specifically it does away with the decimal multiplication table, or with the alternative double procedure of building up the multiples by each multiplier or quotient digit by additions first, and then combining these (according to positional value) by a second sequence of additions

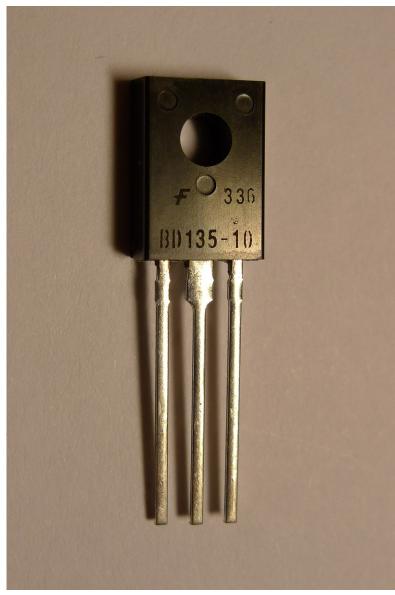
Imagem: Smithsonian Libraries and Archives, no Internet Archives (https://archive.org/details/firstdraftofrepo00vonn/)

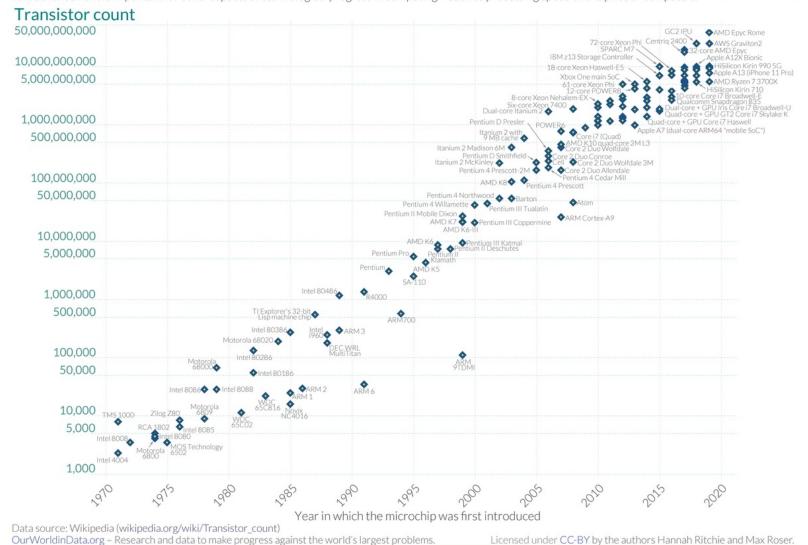
or subtractions. In other words: Binary arithmetics has a simpler and more one-piece logical structure than any other, particularly than the

"[...] O elemento no sentido de 4.3, o tubo de vácuo, usado como válvula ou portão de corrente, é um dispositivo tudo-ou-nada, ou pelo menos se aproxima de um: dependendo se a polarização do grid está acima ou abaixo de um nível de corte, passará corrente ou não. [...] Estes são os chamados circuitos gatilho, o mais básico tendo dois estados de equilíbrio [...]. Assim, quer os tubos sejam usados como portas ou como gatilhos, o tudo ou nada, o arranjo de dois equilíbrios é o mais simples. Como esses arranjos devem lidar com números por meio de seus dígitos, é natural usar um sistema de aritmética em que os dígitos também tenham dois valores. Isso sugere o uso do sistema binário. [...] O uso consistente do sistema binário também provavelmente simplificará as operações de multiplicação e divisão consideravelmente. Especificamente elimina a tabuada de multiplicação decimal [...] Em outras palavras: a aritmética binária tem uma estrutura lógica mais simples e completa do que qualquer outra, especialmente do que a decimal. [...]

Imagem: Los Alamos National Laboratory, na Wikipedia (https://en.wikipedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif)

Quem "fabrica" os 0s e os 1s no computador?




Imagem: WikimediaImages, no Pixabay (https://pixabay.com/photos/transistor-bd-135-electronic-903642/)

Transistor: responsável pelos 0s e 1s 0: quando interrompe a passagem de energia 1: quando permite a passagem de energia

Moore's Law: The number of transistors on microchips has doubled every two years

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Choque de realidade: os 0s e 1s NÃO EXISTEM! São uma ABSTRAÇÃO!

Imagem: OpenClipart-Vectors, no Pixabay (https://pixabay.com/vectors/button-on-off-power-engage-energy-161555/)

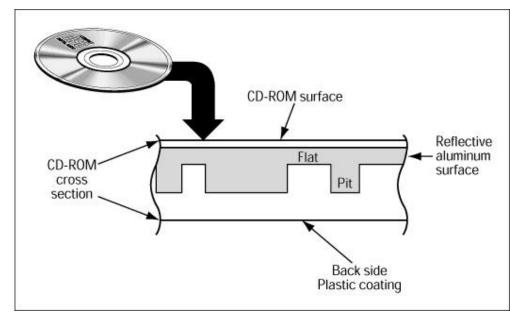


Imagem: Marko Medenica, Aaron Day e Natalia Burina, University of Washington (https://courses.cs.washington.edu/courses/cse370/01au/minirproject/370Leopards/cse370MiniResearch.htm)

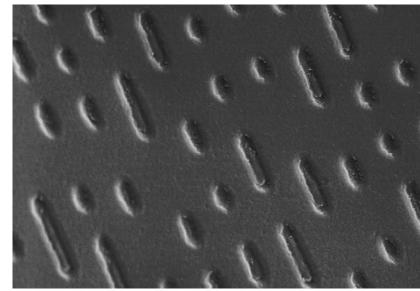


Imagem: Paul Murrel, Wirtschaftsuniversität Wien (https://statmath.wu.ac.at/courses/data-analysis/itdtHTML/node55.html)

Imagem: WikimediaImages, no Pixabay (https://pixabay.com/photos/transistor-bd-135-electronic-903642/)

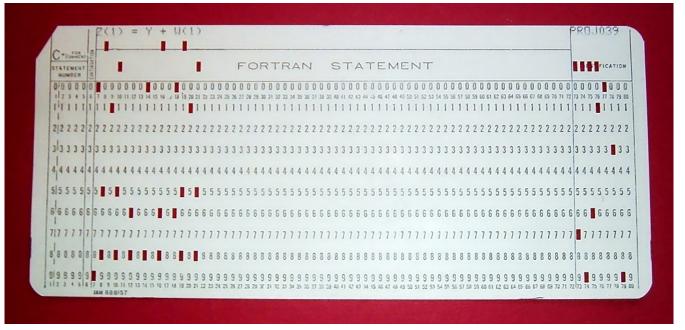


Imagem: Arnold Reinhold, na Wikimedia Commons (https://commons.wikimedia.org/wiki/File:FortranCardPROJ039.agr.jpg)

Choque de realidade: os 0s e 1s NÃO EXISTEM! São uma ABSTRAÇÃO!

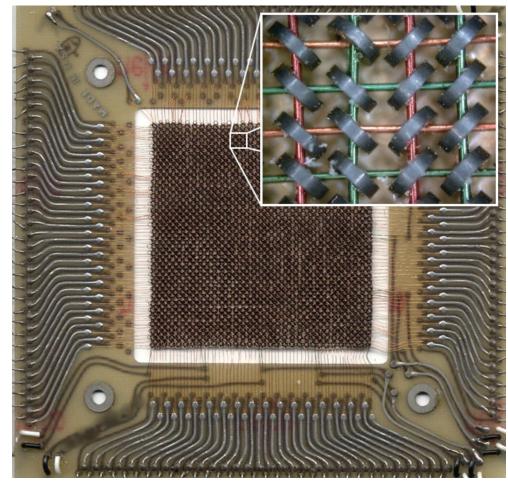


Imagem: Orion 8, na Wikipedia (https://en.wikipedia.org/wiki/File:Ferrite_core_memory.jpg)

64 x 64 (4.096) bits de memória, CDC 6600.

Jitze Couperus, na Wikipedia (https://commons.wikimedia.org/wiki/File:CDC 6600.jc.jpg)

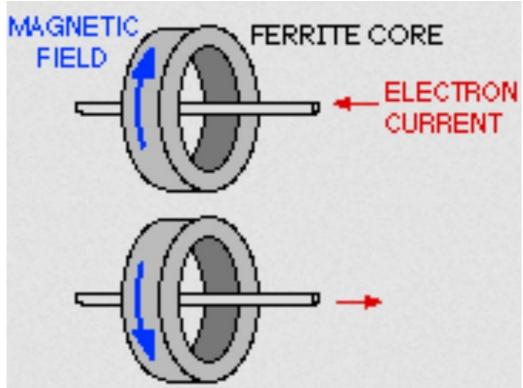
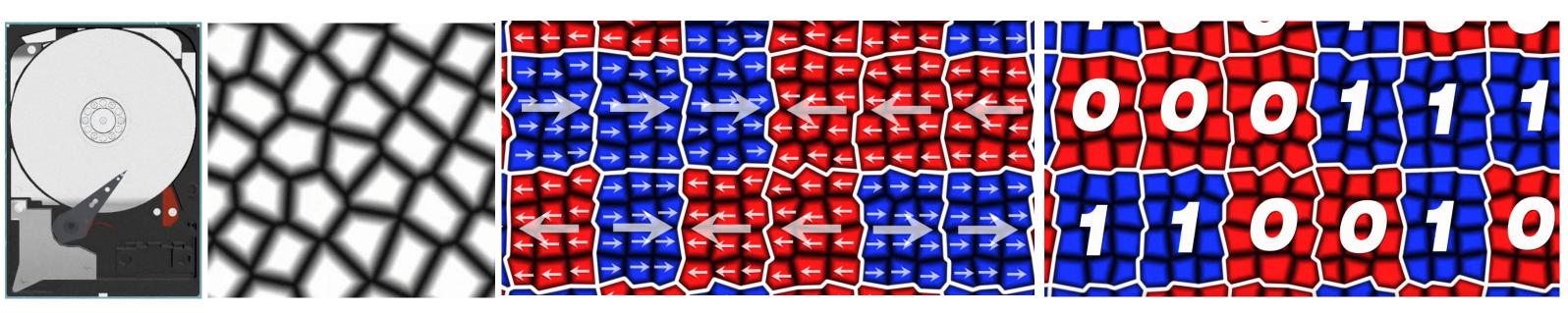
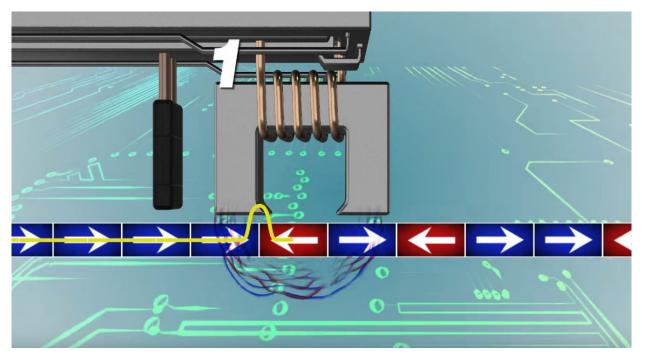
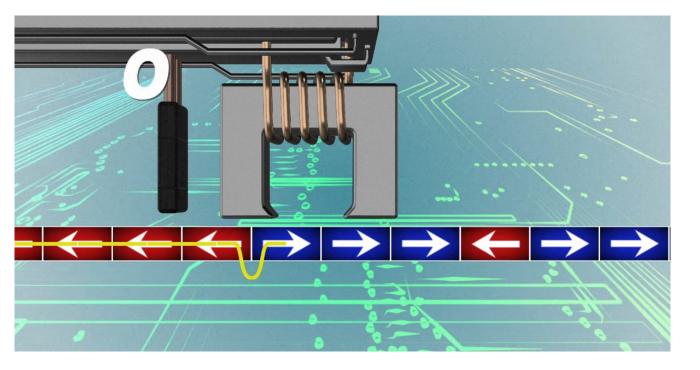





Imagem: adaptado de "Magnetic Core Memory Systems", por Brent Hilpert (http://madrona.ca/e/coremem/index.html)

Choque de realidade: os 0s e 1s NÃO EXISTEM! São uma ABSTRAÇÃO!

Choque de realidade: os Os e 1s NÃO EXISTEM! São uma ABSTRAÇÃO!

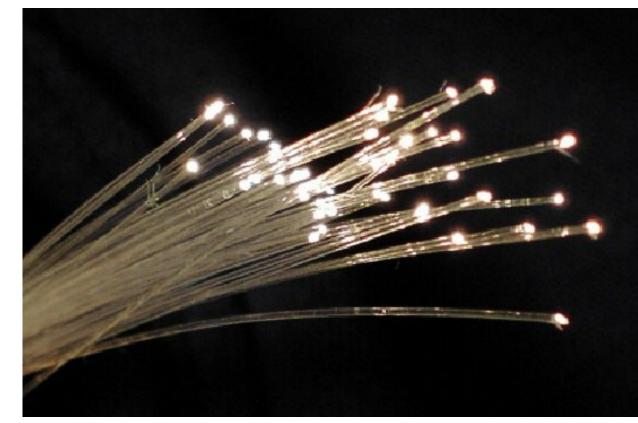


Imagem: BigRiz, na Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Fibreoptic.jpg)

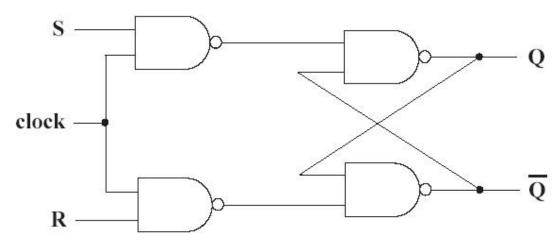


Imagem: Thyago Quintas, na Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Flip-flop SR.JPG)

Dispositivos bi-estáveis podem ser usados, desde que:

- a) os estados sejam separados;
- b) os estados podem ser lidos; e
- c) os estados podem ser alternados.

Até aqui: noção intuitiva

Encontrar uma representação adequada para a entrada e a saída de um problema é essencial:

- Ao mudar a representação podemos fazer melhor

Computadores falam binário:

- Intuitivamente funciona como o hodômetro de um carro
- É a representação mais conveniente
- bit (binary digit): é cada algarismo 0 ou 1

Os algarismos binários 0 e 1, no computador, são abstrações:

- Eletricidade (transístores)
- Sulcos (CD-ROM)
- Direção do campo magnético (cores de memória, HD)
- Furos (cartão perfurado)
- Eletricidade (circuitos flip-flop)
- Luz (fibra óptica)

Representação de números: formalização (a professora da 5^a série estava certa)

Imagem: 12019, no Pixabay (https://pixabay.com/photos/school-classroom-boys-girls-79612/)

Quando ela falava que você usaria a matéria no futuro, não estava brincando!

Para entender a representação de números no computador, você precisa relembrar:

- Base de um sistema numérico (quantidade de algarismos)
- Valor posicional de um algarismo
- Decomposição numérica

(sim, matéria da 5^a série)

Representação de números: sistema decimal

Base do sistema decimal: 10

```
Valor posicional de um algarismo: n_i \times 10^i

n = algarismo

i = posição (da direita para esquerda, inicia em 0)

n = algarismo na posição i
```


Imagem: adaptado de atevern07, no Pixabay
(https://pixabay.com/illustrations/balloon-foil-balloon-foil-number-7185735/)

Decomposição numérica:

$$(n_i \times 10^i) + (n_{i-1} \times 10^{i-1}) + (n_{i-2} \times 10^{i-2}) + \dots + (n_0 \times 10^0)$$

Representação de números: sistema decimal

$$(n_i \times 10^i) + (n_{i-1} \times 10^{i-1}) + (n_{i-2} \times 10^{i-2}) + \dots + (n_0 \times 10^0)$$

$$n_i \times 10^i$$

$$364 = (3 \times 10^{2}) + (6 \times 10^{1}) + (4 \times 10^{0})$$
$$= 300 + 60 + 4$$

Representação de números: sistema decimal

Quadro de Valor Posicional

	dades rilhõe			dades Silhõe			dade: Iilhõe		Unidades de Milhar		Unidades Simples			← Classes	
15 ^a	14 ^a	13 ^a	12 ^a	11 ^a	10 ^a	9 ^a	8 ^a	7 ^a	6 ^a	5 ^a	4 ^a	3 ^a	2 ^a	1 ^a	← Ordens
14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	← Posição
Centenas de trilhões	Dezenas de trilhões	Unidades de trilhões	Centenas de bilhões	Dezenas de bilhões	Unidades de bilhões	Centenas de milhões	Dezenas de milhões	Unidades de milhões	Centenas de milhar	Dezenas de milhar	Unidades de milhar	Centenas	Dezenas	Unidades	
								1	4	8	3	0	0	7	

 $(1 \times 10^6) + (4 \times 10^5) + (8 \times 10^4) + (3 \times 10^3) + (0 \times 10^2) + (0 \times 10^1) + (7 \times 10^0)$ 1.000.000 + 400.000 + 80.000 + 3.000 + 0 + 0 + 71.483.007

Representação de números: sistema binário

Base do sistema binário: 2

Imagem: adaptado de atevern07, no Pixabay (https://pixabay.com/illustrations/balloon-foil-balloon-foil-number-7185735/)

Valor posicional de um algarismo:
$$n_i \times 2^i$$

n = algarismo

i = posição (da direita para esquerda, inicia em 0)

n_i = algarismo na posição i

Decomposição numérica:

$$(n_i \times 2^i) + (n_{i-1} \times 2^{i-1}) + (n_{i-2} \times 2^{i-2}) + \dots + (n_0 \times 2^0)$$

Representação de números: sistema binário

$$(n_i \times 2^i) + (n_{i-1} \times 2^{i-1}) + (n_{i-2} \times 2^{i-2}) + \dots + (n_0 \times 2^0)$$

$$n_i \times 2^i$$

$$10011 = (1 \times 2^{4}) + (0 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0})$$
$$= 16 + 0 + 0 + 2 + 1$$
$$= 19$$

Representação de números: sistema binário

Quadro de Valor Posicional

										C						
← Bytes				L	1				2							
L ← bits	2 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
) ← Posição	1 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		(2) Dois	(4) Quatro	(8) Oito	(16) Dezesseis	(32) Trinta e dois	(64) Sessenta e quatro	(128) Cento e vinte e oito	(256) Duzentos e cinqüenta e seis	(512) Quinhentos e doze	(1024) Mil e vinte e quatro	(2048) Dois mil e quarenta e oito	(4096) Quatro mil e noventa e seis	(8192) Oito mil dento e noventa e dois	(16384) Dezesseis mil trezentos e oitenta e quatro	(32768) Trinta e dois mil setecentos e sessenta e oito
L	0 1	0	1	0	1	0	0	0	0	1						

Representação de números: sistema octal

Base do sistema octal: 8

```
Valor posicional de um algarismo: n_i \times 8^i

n = algarismo

i = posição (da direita para esquerda, inicia em 0)

n<sub>i</sub> = algarismo na posição i
```

Decomposição numérica:

$$(n_i \times 8^i) + (n_{i-1} \times 8^{i-1}) + (n_{i-2} \times 8^{i-2}) + \dots + (n_0 \times 8^0)$$

Imagem: adaptado de atevern07, no Pixabay (https://pixabay.com/illustrations/balloon-foil-balloon-foil-number-7185735/)

Representação de números: sistema octal

$$(n_i \times 8^i) + (n_{i-1} \times 8^{i-1}) + (n_{i-2} \times 8^{i-2}) + \dots + (n_0 \times 8^0)$$

$$n_i \times 8^i$$

$$17034 = (1 \times 8^{4}) + (7 \times 8^{3}) + (0 \times 8^{2}) + (3 \times 8^{1}) + (4 \times 8^{0})$$
$$= 4096 + 3584 + 0 + 24 + 4$$
$$= 7708$$

Representação de números: sistema octal

Quadro de Valor Posicional

				_	_	_		_	_							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	← Posição
(35.184.372.088.832) Trinta e cinco trilhões cento	(4.398.046.511.104) Quatro trilhões trezentos e	(549.755.813.888) Quinhentos e quarenta e nove	(68.719.476.736) Sessenta e oito bilhões setecentos	(8.589.934.592) Oito bilhões quinhentos e oitenta	(1.073.741.824) Um bilhão setenta e três milhões	(134.217.728) Cento e trinta e quatro milhões	(16.777.216) Dezesseis milhões setecentos e setenta	(2.097.152) Dois milhões noventa e sete mil cento	(262.144) Duzentos e sessenta e dois mil cento e	(32.768) Trinta e dois mil setecentos e sessenta e	(4.096) Quatro mil e noventa e seis	(512) Quinhentos e doze	(64) Sessenta e quatro	(8) Oito	(1) Um	
			3	-(i) (ii)		8	5	7	0	0	3	4	1	5	3	

 $(5 \times 8^{8}) + (7 \times 8^{7}) + (0 \times 8^{6}) + (0 \times 8^{5}) + (3 \times 8^{4}) + (4 \times 8^{3}) + (1 \times 8^{2}) + (5 \times 8^{1}) + (3 \times 8^{0})$ 86.889.080 + 14.680.064 + 0 + 0 + 12.288 + 2.048 + 64 + 40 + 3 98.580.587

Representação de números: sistema hexadecimal

Base do sistema hexadecimal: 16

```
Valor posicional de um algarismo: n_i \times 16^i

n = algarismo

i = posição (da direita para esquerda, inicia em 0)

n_i = algarismo na posição i
```

Decomposição numérica:

Hexadecimal	Decimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

$$(n_i \times 16^i) + (n_{i-1} \times 16^{i-1}) + (n_{i-2} \times 16^{i-2}) + \dots + (n_0 \times 16^0)$$

Representação de números: sistema hexadecimal

$$(n_i \times 16^i) + (n_{i-1} \times 16^{i-1}) + (n_{i-2} \times 16^{i-2}) + \dots + (n_0 \times 16^0)$$

$$n_i \times 16^i$$

$F90B4 = (15 \times 16^{4}) + (9 \times 16^{3}) + (0 \times 16^{2}) + (11 \times 16^{1}) + (4 \times 16^{0})$
= 983040 + 36864 + 0 + 176 + 4
= 1020084

Hexadecimal	Decimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Representação de números: sistema hexadecimal

Quadro de Valor Posicional

	(1.152.921.504.606.850.000) Um quintilhão, cento e	15
	(72.057.594.037.927.900) Setenta e dois quatrilhões	14
	(4.503.599.627.370.496) Quatro quatrilhões quinhentos	13
	(281.474.976.710.656) Duzentos e oitenta e um trilhões	12
	(17.592.186.044.416) Dezessete trilhões quinhentos	11
	(1.099.511.627.776) Um trilhão noventa e nove bilhões	10
	(68.719.476.736) Sessenta e oito bilhões setecentos	9
1	(4.294.967.296) Quatro bilhões duzentos e noventa	8
В	(268.435.456) Duzentos e sessenta e oito milhões	7
0	(16.777.216) Dezesseis milhões setecentos e setenta	6
0	(1.048.576) Um milhão quarenta e oito mil quinhentos	5
0	(65.536) Sessenta e cinco mil quinhentos e trinta	4
0	(4.096) Quatro mil e noventa e seis	3
Α	(256) Duzentos e cinquenta e seis	2
9	(16) Dezesseis	1
Е	(1) Um	0
		← Posição

 $(1 \times 16^{8}) + (11 \times 16^{7}) + (0 \times 16^{6}) + (0 \times 16^{5}) + (0 \times 16^{4}) + (0 \times 16^{6}) + (10 \times 16^{2}) + (9 \times 16^{1}) + (14 \times 16^{0}) + (14 \times 16^{1}) + (1$

Hexadecimal	Decimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
Α	10
В	11
С	12
D	13
E	14
F	15

Representação de números: generalização

Base do sistema: b

```
Valor posicional de um algarismo: n_i \times b^i

n = algarismo

i = posição (da direita para esquerda, inicia em 0)

n<sub>i</sub> = algarismo na posição i
```

Decomposição numérica:

$$(n_i \times b^i) + (n_{i-1} \times b^{i-1}) + (n_{i-2} \times b^{i-2}) + \dots + (n_0 \times b^0)$$

Representação de números: unidades de medida decimal

Tabela 1: Grandezas de base 10 maiores do que a unidade

Prefixo Símbolo Número Nome Fator 10^{32} Centena de nonilhão 10^{31} Dezena de nonilhão 10^{30} Q Nonilhão quetta 10^{29} Centena de octilhão 10^{28} Dezena de octilhão 10 000 000 000 000 000 000 000 000 000 10^{27} Octilhão 1 000 000 000 000 000 000 000 000 000 ronna 10^{26} Centena de septilhão 100 000 000 000 000 000 000 000 000 10^{25} Dezena de septilhão $10\,000\,000\,000\,000\,000\,000\,000\,000$ 10^{24} Y Septilhão $1\,000\,000\,000\,000\,000\,000\,000\,000$ yotta 10^{23} Centena de sextilhão 100 000 000 000 000 000 000 000 10^{22} 10 000 000 000 000 000 000 000 Dezena de sextilhão 10^{21} Z $1\ 000\ 000\ 000\ 000\ 000\ 000\ 000$ Sextilhão zetta 10^{20} Centena de quintilhão 100 000 000 000 000 000 000 10^{19} Dezena de quintilhão 10 000 000 000 000 000 000 10^{18} E Quintilhão exa 1 000 000 000 000 000 000 10^{17} Centena de quatrilhão 100 000 000 000 000 000 10^{16} Dezena de quatrilhão 10 000 000 000 000 000 10^{15} Quatrilhão 10000000000000000 peta 10^{14} Centena de trilhão 100 000 000 000 000 10^{13} Dezena de trilhão 10 000 000 000 000 10^{12} Т $1\,000\,000\,000\,000$ Trilhão tera 10^{11} 100 000 000 000 Centena de bilhão 10^{10} Dezena de bilhão $10\,000\,000\,000$ 10^{9} G Bilhão giga $1\,000\,000\,000$ 10^{8} Centena de milhão 100 000 000 10^{7} Dezena de milhão 10 000 000 10^{6} M Milhão 1000000mega 10^{5} Centena de milhar 100 000 Dezena de milhar 10^{4} $10\,000$ 10^{3} kilo 1000 Milhar hecto h Centena 10^{1} 10 Dezena deca da 10^{0} 1 Unidade

Tabela 2: Grandezas de base 10 menores do que a unidade

Fator	Prefixo	Símbolo	Número	Nome
10^{0}	121	-	1	Unidade
10^{-1}	deci	d	0,1	Décimo
10^{-2}	centi	С	0,01	Centésimo
10^{-3}	mili	m	0,001	Milésimo
10^{-4}	-	-	0,0001	Décimo de milésimo
10^{-5}	-	-	0,000 01	Centésimo de milésimo
10^{-6}	micro	μ	0,000 001	Milionésimo
10^{-7}	-	-	0,0000001	Décimo de milionésimo
10^{-8}	-	-	0,00000001	Centésimo de milionésimo
10^{-9}	nano	n	0,000 000 001	Bilionésimo
10^{-10}	-	-	0,0000000001	Décimo de bilionésimo
10^{-11}	-	-	0,000 000 000 01	Centésimo de bilionésimo
10^{-12}	pico	p	0,000 000 000 001	Trilionésimo
10^{-13}	-	-	0,0000000000001	Décimo de trilionésimo
10^{-14}	-	-	0,000 000 000 000 01	Centésimo de trilionésimo
10^{-15}	femto	f	0,000 000 000 000 001	Quatrilionésimo
10^{-16}	-	-	0,0000000000000001	Décimo de quatrilionésimo
10^{-17}	-	9	0,000 000 000 000 000 01	Centésimo de quatrilionésimo
10^{-18}	atto	a	0,000 000 000 000 000 001	Quintilionésimo
10^{-19}	-	-	0,0000000000000000001	Décimo de quintilionésimo
10^{-20}	-	-	0,000 000 000 000 000 000 01	Centésimo de quintilionésimo
10^{-21}	zepto	\mathbf{z}	0,000000000000000000001	Sextilionésimo
10^{-22}	-	-	0,0000000000000000000001	Décimo de sextilionésimo
10^{-23}	-	2	0,00000000000000000000001	Centésimo de sextilionésimo
10^{-24}	yocto	у	0,000 000 000 000 000 000 000 001	Septilionésimo
10^{-25}	-	-	0,0000000000000000000000001	Décimo de septilionésimo
10^{-26}	-	-	0,0000000000000000000000000000	Centésimo de septilionésimo
10^{-27}	ronto	r	0,000 000 000 000 000 000 000 000 001	Octilionésimo
10^{-28}	-		0,0000000000000000000000000000	Décimo de octilionésimo
10^{-29}	-	4	0,0000000000000000000000000000	Centésimo de octilionésimo
10^{-30}	quecto	q	0,000 000 000 000 000 000 000 000 000 0	Nonilionésimo
10^{-31}	-	-	0,000 000 000 000 000 000 000 000 000 0	Décimo de nonilionésimo
10^{-32}	-		0,000 000 000 000 000 000 000 000 000 0	Centésimo de nonilionésimo

Representação de números: unidades de medida decimal

Tabela 3: Resumo de ordens de grandeza padronizadas no SI

Fator	Prefixo	Símbolo	Nome
10^{30}	quetta	Q	Nonilhão
10^{27}	ronna	R	Octilhão
10^{24}	yotta	Y	Septilhão
10^{21}	zetta	Z	Sextilhão
10^{18}	exa	E	Quintilhão
10^{15}	peta	P	Quatrilhão
10^{12}	tera	T	Trilhão
10^{9}	giga	G	Bilhão
10^{6}	mega	\mathbf{M}	Milhão
10^{3}	kilo	k	Milhar
10^{2}	hecto	h	Centena
10^{1}	deca	da	Dezena
10 ⁰	15	-	Unidade
10^{-1}	deci	d	Décimo
10^{-2}	centi	c	Centésimo
10^{-3}	mili	m	Milésimo
10^{-6}	micro	μ	Milionésimo
10^{-9}	nano	n	Bilionésimo
10^{-12}	pico	p	Trilionésimo
10^{-15}	femto	f	Quatrilionésimo
10^{-18}	atto	a	Quintilionésimo
10^{-21}	zepto	Z	Sextilionésimo
10^{-24}	yocto	y	Septilionésimo
10^{-27}	ronto	r	Octilionésimo
10^{-30}	quecto	q	Nonilionésimo

Algarismos Significativos (https://archive.org/details/aasf_sigfigs_20210126)

Representação de números: unidades de medida binária

bit b Um algarismo binário (0 ou 1)
nibble Conjunto de 4 bits
Byte B Conjunto de 8 bits ————

Tabela 4: Ordens de grandeza para potências de base 2

Fator	Prefixo	Símbolo
2^{0}	-	-
2^{10}	kibi	Ki
2^{20}	mebi	Mi
2^{30}	gibi	Gi
2^{40}	tebi	Ti
2^{50}	pebi	Pi
2^{60}	exbi	Ei
2^{70}	zebi	Zi
2^{80}	yobi	Yi
2^{90}	robi	Ri
2^{100}	quebi	Qi

Algarismos Significativos (https://archive.org/details/aasf sigfigs 20210126)

Unidade fundamental de medida nos computadores.

Armazena, em geral, 1 caractere.

Na Bíblia existem 3.566.480 letras (fonte: biblia.com.br). Para armazenar a Bíblia eu precisaria de quanto de espaço de armazenamento? Aprox. 3,6 MiB.

Um pendrive de 16 GiB armazenaria quantas Bíblias? Aprox. 4.550 Bíblias.

Representação de números: unidades decimais x unidades binárias

Comparação entre unidades decimais e binárias

[Decimal
	Fator	Prefixo (símbolo)	Valor
Unidade	10°	112227215	1
Milhar	10 ³	kilo (k)	1.000
Milhão	10 ⁶	mega (M)	1.000.000
Bilhão	10 ⁹	giga (G)	1.000.000.000
Trilhão	10 ¹²	tera (T)	1.000.000.000.000
Quatrilhão	10 ¹⁵	peta (P)	1.000.000.000.000.000
Quintilhão	10 ¹⁸	exa (E)	1.000.000.000.000.000
Sextilhão	10 ²¹	zetta (Z)	1.000.000.000.000.000.000
Septilhão	10 ²⁴	yotta (Y)	1.000.000.000.000.000.000.000
Octilhão	10 ²⁷	ronna (R)	1.000.000.000.000.000.000.000.000
Nonilhão	10 ³⁰	quetta (Q)	1.000.000.000.000.000.000.000.000.000

[Binário		
[Fator	Prefixo (símbolo)	Valor
Unidade	2 ⁰	110000000000000000000000000000000000000	1
Milhar	2 ¹⁰	kibi (Ki)	1.024
Milhão	2 ²⁰	mebi (Mi)	1.048.576
Bilhão	2 ³⁰	gibi (Gi)	1.073.741.824
Trilhão	2 ⁴⁰	tebi (Ti)	1.099.511.627.776
Quatrilhão	2 ⁵⁰	pebi (Pi)	1.125.899.906.842.624
Quintilhão	2 ⁶⁰	exbi (Ei)	1.152.921.504.606.846.976
Sextilhão	2 ⁷⁰	zebi (Zi)	1.180.591.620.717.411.303.424
Septilhão	2 ⁸⁰	yobi (Yi)	1.208.925.819.614.629.174.706.176
Octilhão	2 ⁹⁰	robi (Ri)	1.237.940.039.285.380.274.899.124.224
Nonilhão	2100	quebi (Qi)	1.267.650.600.228.229.401.496.703.205.376

Transformações, números negativos e frações: no anexo (importante!)

Método da divisão:

Decimal para Binário

Decimal para Octal

Decimal para Hexadecimal

Método indireto via binário:

Octal para Hexadecimal

Hexadecimal para Octal

Decomposição numérica:

Binário para Decimal

Octal para Decimal

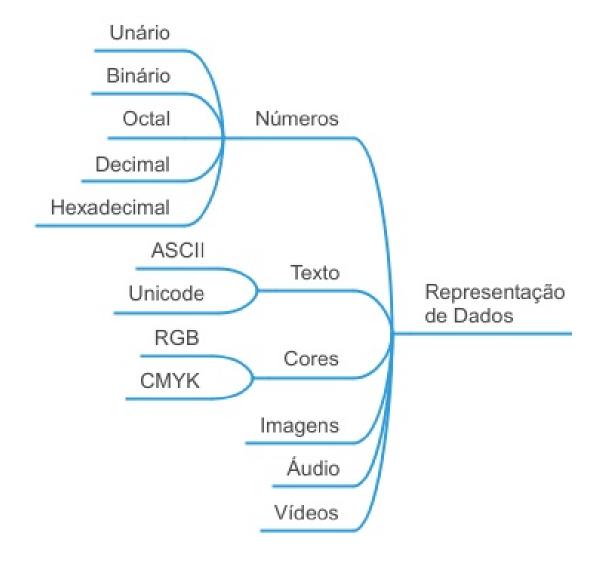
Hexadecimal para Decimal

Números negativos

Agrupamento:

Binário para Octal

Binário para Hexadecimal


Números fracionários

Desagrupamento:

Octal para Binário

Hexadecimal para Binário

Representação de dados: texto

Encoding

ASCII

Sistemas de escrita e scripts

Unicode

- Code points
- Emojis

Como representar letras se tudo o que o computador entende são 0s e 1s?

Com encodings!

Encoding: processo de mapear os caracteres em números binários, permitindo que eles sejam armazenados, transmitidos e processados por computadores.

Exemplo:

Morse Code: 1840

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

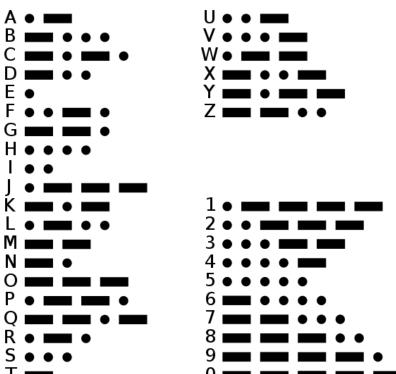


Imagem: Rhey T. Snodgrass & Victor F. Camp, na
Wikimedia Commons (https://commons.wikimedia.org/wiki/File:International_Morse_Code.svg)

Caractere	Decimal	Binário
\mathbf{A}	0	0000000
В	1	0000001
C	2	0000010
\mathbf{D}	3	00000011
•••	•••	•••
Z	25	00011001
a	26	00011010
b	27	00011010
•••	•••	•••
${f Z}$	51	00110011
0	52	00110100
1	53	00110101
•••	•••	•••
!	•••	•••
,	•••	•••

ASCII: American Standard Code for Information Interchange

Original ASCII: 7 bits 0000000 (0) 1111111 (127)

É um encoding direto e de tamanho fixo:

- Direto: cada letra é mapeada diretamente para uma seqüência binária específica (A = 1000001)
- Tamanho fixo: cada letra binária tem 7 bits

0	NUL	16	DLE	32	SP	48	0	64	@	80	Р	96 `	112 p
1	<u>SOH</u>	17	DC1	33	!	49	1	65	Α	81	Q	97 a	113 q
2	<u>STX</u>	18	DC2	34	"	50	2	66	В	82	R	98 b	114 r
3	<u>ETX</u>	19	DC3	35	#	51	3	67	С	83	S	99 c	: 115 s
4	<u>EOT</u>	20	DC4	36	\$	52	4	68	D	84	Т	100 c	l 116 t
5	ENQ	21	NAK	37	%	53	5	69	Е	85	U	101 €	e 117 u
6	<u>ACK</u>	22	<u>SYN</u>	38	&	54	6	70	F	86	٧	102 f	118 v
7	<u>BEL</u>	23	<u>ETB</u>	39	•	55	7	71	G	87	W	103 g	119 w
8	<u>BS</u>	24	CAN	40	(56	8	72	Н	88	Χ	104 h	120 x
9	<u>HT</u>	25	<u>EM</u>	41)	57	9	73	1	89	Υ	105 i	121 y
10	<u>LF</u>	26	<u>SUB</u>	42	*	58	:	74	J	90	Z	106 j	122 z
11	VT	27	ESC	43	+	59	;	75	K	91	[107 k	123 {
12	<u>FF</u>	28	<u>FS</u>	44	,	60	<	76	L	92	\	108 l	124
13	<u>CR</u>	29	<u>GS</u>	45	-	61	=	77	M	93]	109 r	n 125 }
14	<u>SO</u>	30	<u>RS</u>	46		62	>	78	N	94	^	110 r	126 ~
15	<u>SI</u>	31	<u>US</u>	47	/	63	?	79	0	95	_	111 c	127 <u>DEL</u>

Imagem: CS50 Lecture 0 (https://cdn.cs50.net/2022/fall/lectures/0/lecture0.pdf)

ASCII: American Standard Code for Information Interchange

						_		_						- 10		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F
0	$^{N}U_{L}$	S _{OH}	s _{TX}	ETX	EOT	E _{NQ}	A _C _K	B _E L	BS	НТ	LF	V _T	FF	C _R	SS	S
0x00	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	$^{\mathrm{D}}_{\mathrm{L}_{\mathrm{E}}}$	D _C 1	$^{\mathrm{D}}\mathrm{C}_{2}$	D_{C_3}	D _{C4}	N _A K	SYN	ETB	C _{AN}	E _M	S_{U_B}	Es _C	Fs	GS	RS	US
0x10	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	Sp	!	"	#	\$	%	&		()	*	+		-		/
0x20	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0x30	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	@	Α	В	C	D	E	F	G	Н	- 1	J	K	L	M	N	0
0x40	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	Р	Q	R	S	Т	U	V	W	X	Υ	Z	[1]	٨	_
0x50	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	*	a	Ь	C	d	е	f	g	h	i	j	k	l	m	n	0
0x60	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	р	q	Г	S	t	u	V	W	X	У	Z	{		}	~	D _E L
0x70	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	€		,	f	,,		†	#	^	%	Š	<	Œ		Ž	
0x80	128		130	131	132	133	134	135	136	137	138	139	140		142	
144				u	"	•	_		~	TM	š	>	œ		ž	Ÿ
0x90		145	146	147	148	149	150	151	152	153	154	155	156		158	159
160		i	¢	£	¤	¥	1	§	••	©	а	**	7	173	R	-
0xA0	160	161	162	163	164	165	166	167	168	169	170	171	172		174	175
176	0	±	2	3		н	¶			1	0	>>	1/4	1/2	3/4	ż
0xB0	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	ì	ĺ	î	Ϊ
0xC0	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	Đ	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
0xD0	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
0xE0	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	ð	ñ	ò	ó	ô	õ	ö	÷	Ø	ù	ú	û	ü	ý	þ	ÿ
0xF0	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
- DAIL 0							(httpa.									

Extended ASCII: 8 bits 00000000 (0) 11111111 (255)

É um encoding direto e de tamanho fixo:

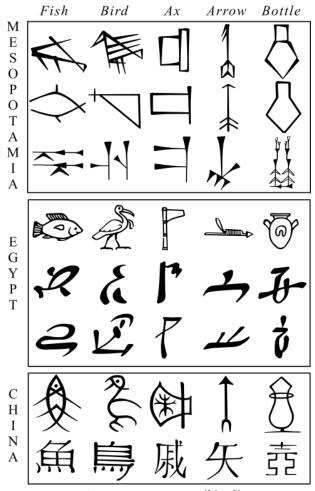
- Direto: cada letra é mapeada diretamente para uma seqüência binária específica (A = 01000001)
- Tamanho fixo: cada letra binária tem 8 bits

Representação de texto com ASCII

0	<u>NUL</u>	16	<u>DLE</u>	32	<u>SP</u>	48	0	64	@	80	Р	96	`	112 p
1	<u>SOH</u>	17	DC1	33	!	49	1	65	Α	81	Q	97	a	113 q
2	<u>STX</u>	18	DC2	34	"	50	2	66	В	82	R	98	b	114 r
3	<u>ETX</u>	19	DC3	35	#	51	3	67	С	83	S	99	С	115 s
4	<u>EOT</u>	20	DC4	36	\$	52	4	68	D	84	Т	100	d	116 t
5	ENQ	21	<u>NAK</u>	37	%	53	5	69	Е	85	U	101	e	117 u
6	<u>ACK</u>	22	<u>SYN</u>	38	æ	54	6	70	F	86	٧	102	f	118 v
7	<u>BEL</u>	23	<u>ETB</u>	39	1	55	7	71	G	87	W	103	g	119 w
8	<u>BS</u>	24	<u>CAN</u>	40	(56	8	72	Н	88	Χ	104	h	120 x
9	<u>HT</u>	25	<u>EM</u>	41)	57	9	73	1	89	Υ	105	i	121 y
10	<u>LF</u>	26	<u>SUB</u>	42	*	58	:	74	J	90	Z	106	j	122 z
11	<u>VT</u>	27	ESC	43	+	59	;	75	K	91	[107	k	123 {
12	<u>FF</u>	28	<u>FS</u>	44	,	60	<	76	L	92	\	108	l	124
13	<u>CR</u>	29	<u>GS</u>	45	(-)	61	=	77	М	93]	109	m	125 }
14	<u>SO</u>	30	<u>RS</u>	46		62	>	78	Ν	94	^	110	n	126 ~
15	<u>SI</u>	31	<u>US</u>	47	/	63	?	79	0	95	_	111	0	127 <u>DEL</u>

01001111 01101001

105


33 00100001

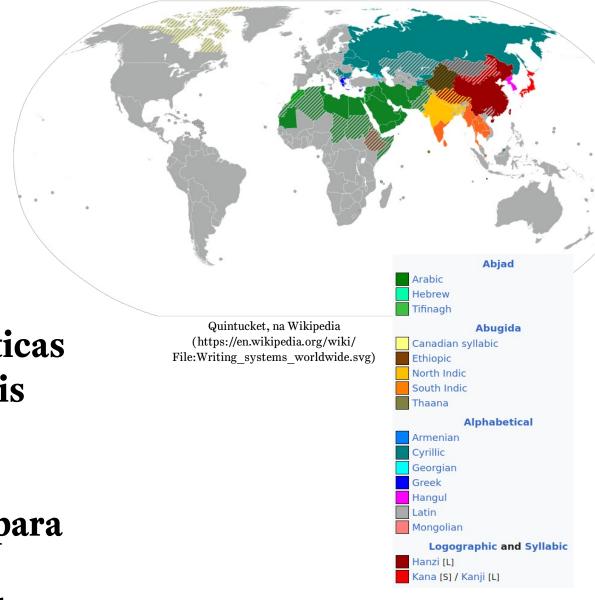
Limitações do ASCII

- Foco no sistema de escrita latino
- Maioria dos sistemas de escrita não é representado

Xie Jin, na Wikipedia (https://en.wikipedia.org/wiki/File:Kuozhai.jpg)

Gaston Maspero, na Wikipedia
(https://en.wikipedia.org/wiki/
File:Comparative_evolution_of_Cuneiform,_Egypti
an and Chinese characters.svg)

4	3	2	1	2			3		4
ENGLISH	ARCHAIC ROMAN	ARCHAIC GREEK	PHENICIAN	Впанма	DE	VELOPMENT	rs of Bri	нма	MODERN
A	A	A	*	K	К	H	ઝ	अ	羽
K	K K X X		K	t	+	Ŧ	Ŧ	Q	ক
G	C	1	1	٨	Λ	n	ŋ	শ	ग
Т	τ	Т	+	٨	λ	٨	٨	ጎ	ন
TH	8	8	0	0	Θ	B	В	8	थ
D	D	Δ	Δ	0	D	>	<	3	द
P	٢	٦	7	L	ı	บ	и	व	प
В	В	8	9		0	Ų	₫	₫	ब
Y	Y 2 1 1		J	1	T	बा	य	य	
V	V	Y	Y	7	b	۵	₫	đ	व


Monnier Williams, na Wikipedia (https://en.wikipedia.org/wiki/ File:Sanskrit_Brhama_English_alphabets.jpg)

Limitações do ASCII

Sistema de escrita: método de representar visualmente a comunicação verbal através de um script e um conjunto de regras. Principais:

- Alfabetos: as letras representam os sons
- Silábicos: os símbolos representam as sílabas
- Logográficos: os símbolos representam unidades semânticas
- Abjads: semelhante aos alfabetos, não repesenta as vogais
- Abugidas: símbolos representam par cosoante-vogal

Script: coleção de letras e outros sinais escritos, utilizados para representar informação textual em um ou mais sistemas de escrita. Alguns scripts suportam apenas um único sistema de escrita e linguagem (script armênico), e outros suportam muitos sistemas de escrita e linguagens (script latino: inglês, francês, alemão, italiano, português, ...)

Unicode

Criado em 1991 para representar todos os scripts de todos os sistemas de escrita (em uso ou extintos). Atualmente na versão 15.1 (setembro/2023), contendo:

- 161 scripts
- **149.813 caracteres**

https://home.unicode.org

Não é diretamente um encoding, como o ASCII. O Unicode, na verdade, é um grande "catálogo" de letras, símbolos, caracteres, etc., cada uma com um código numérico único, exclusivo e universal, chamado de "Unicode Code Point".

Os code points estabelecidos vão do número 0 até 1.114.111 (1.114.112 números), dos quais a faixa de números 55.296 até 57.343 (2.048 números) é reservada, sobrando então o total de 1.112.064 code points disponíveis para uso.

Unicode: sobre os code points

A faixa numérica de code points (0 até 1.114.111) é representada em hexadecimal, com o prefixo "U+", seguidos de pelo menos quatro dígitos. A faixa de code points é então:

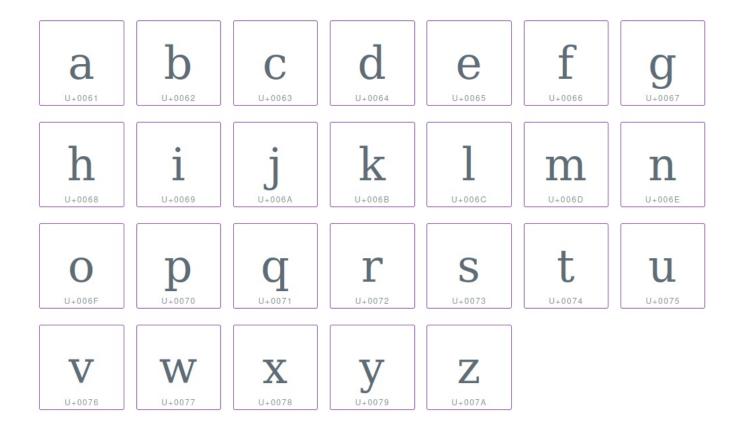
U+0000 0 U+10FFFF 1.114.111

Existem sites que permitem consultar os code points e caracteres Unicode, tais como:

- Codepoints (https://codepoints.net)
- Unicode Explorer (https://unicode-explorer.com)

Lembre-se: os code points não são um encoding direto, ou seja, não correspondem diretamente a nenhum padrão de bits para representar os caracteres (veremos em breve como o encoding é feito).

Unicode: exemplos de code points


ASCII punctuation and symbols

Extended Arabic letters

Lowercase Latin alphabet

Unicode: exemplos de code points

Representação de texto com Unicode

Imagem: CS50 Lecture 0 (https://cdn.cs50.net/2022/fall/lectures/0/lecture0.pdf)

Imagem: CS50 Lecture 0 (https://cdn.cs50.net/2022/fall/lectures/0/lecture0.pdf)

1F602 128514 11111011000000010 hexadecimal decimal binário

Encoding dos code points

Os code points do Unicode não representam um mapeamento direto em binário. Para esse mapeamento o Unicode utiliza diversos esquemas de encoding. Os principais são:

- Unicode Transformation Format (UTF)
- Universal Coded Character Set (UCS)
- UTF-8: tamanho variável: utiliza de 1 a 4 blocos de 8 bits para cada code point; compatível com ASCII (7 bits).
- UTF-16: tamanho variável: utiliza de 1 a 2 blocos de 16 bits para cada code point; não compatível com ASCII (7 bits).
- UTF-32: tamanho fixo: utiliza 1 bloco de 32 bits para cada code point; não compatível com ASCII (7 bits).

Outros: UTF-EBCDIC, UCS-2, UCS-4, ...

Mais usado hoje em dia: UTF-8.

Encoding dos code points

U+0041

Latin Capital Letter A U+0041 (65)

UTF-8 : 01000001

UTF-16: 000000001000001

U+00A9

Copyright Sign

U+00A9 (169)

UTF-8: 11000010 10101001 UTF-16: 000000010101001

U+2622

Radioactive Sign

U+2622 (9762)

UTF-8 : 11100010 10011000 10100010

UTF-16: 0010011000100010

UTF-32: 00000000000000001001100010010

U+20046

U+20046 (131142)

UTF-8: 11110000 10100000 10000001 10000110

UTF-16: 1101100001000000 1101110001000110

UTF-32: 000000000000010000000001100

Imagens: Codepoints (https://codepoints.net)

UTFs: Online Tools (https://onlinetools.com/unicode/convert-unicode-to-binary)

Unicode: não define a apresentação final

Smi	Smileys & Emotion													
face	ace-smiling													
Nº	Code	Browser	Appl	Goog	FB	Wind	Twtr	Joy	Sams	GMail	SB	DCM	KDDI	CLDR Short Name
1	U+1F600	$\overline{\mathbf{c}}$		\bigcirc	\odot		U				_	_	_	grinning face
2	U+1F603	<u>u</u>	<u>u</u>	<u>u</u>			U			••	(4)	**	(4)	grinning face with big eyes
3	U+1F604	<u></u>		=	0		9	<u>^</u>			¥	_		grinning face with smiling eyes
4	U+1F601				0		D	()		8	뜐	***	©	beaming face with smiling eyes
5	U+1F606	2	25	2	25	\(\)	25	×	2	·	_	₩	_	grinning squinting face
6	U+1F605				©		9			₽ 8	_	20	-	grinning face with sweat
7	U+1F923	7	3	②	Ó		3	10	3	_	_	_	_	rolling on the floor laughing
8	U+1F602	6		8	(2)		8	@		(b)	B	_	•	face with tears of joy
9	U+1F642		<u>u</u>	·	··	\odot	··	<u>u</u>	•	<u>•</u>	_	_	_	slightly smiling face
10	U+1F643	<u></u>	<u>.</u>	<u>.</u>	•	<u></u>	<u>.</u>	•	•	_	_	_	-	upside-down face

Unicode Emoji List (https://unicode.org/emoji/charts-15.0/full-emoji-list.html)

Roboto Mono Variable (2 axes) Christian Robertson

Computação

Oswald Variable (1 axis) Vernon Adams, Kalapi Gajjar, Cyreal

Computação

Noto Sans Variable (3 axes) Google

Computação

Marhey Variable (1 axis) Nur Syamsi, Bustanul Arifin

Computação

Raleway Variable (2 axes) Matt McInerney, Pablo Impallari, Rodrigo Fuenzalida

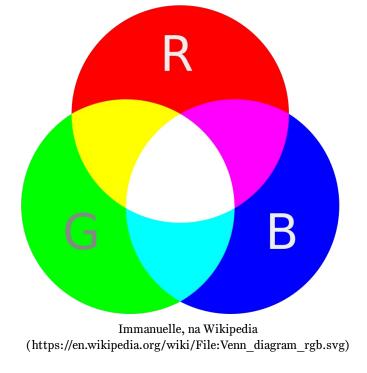
Computação

Google Fonts (https://fonts.google.com)

Unicode: mais de um code point pode ser utilizado

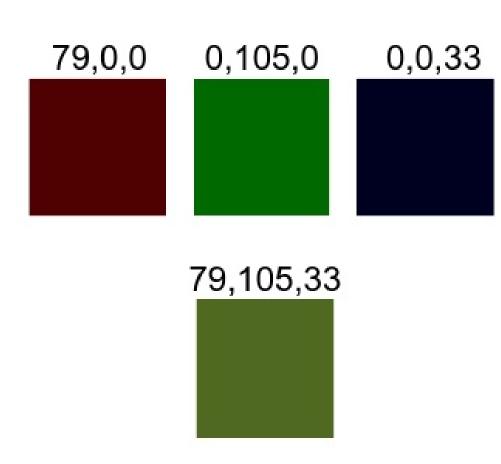
316	U+1F468 U+1F3FB U+200D U+1F9B0			<u></u>	6	©	(1)		60		_		_	man: light skin tone, red hair			
301	U+1F9D4 U+1F3FB					©	(2)			_	_	_	_	person: light skin tone, beard			
302	U+1F9D4 U+1F3FC				9	<u>•</u> •	<u>。</u>	3		_	_	_	_	person: medium-light skin tone, beard			
303	U+1F9D4 U+1F3FD				6	©				_	_	_	_	person: medium skin tone, beard			
304	U+1F9D4 U+1F3FE				6	•				_		_	_	person: medium-dark skin tone, beard			
305	U+1F9D4 U+1F3FF				•	•	(2)			<u> </u>	_	_	_	person: dark skin tone, beard			
139	U+2764 U+FE0F U+200D U+1F525	*	**	*	_	8_9	_	_	<u></u>		_	_		heart on fire			
273	U+1F64B U+200D U+2640 U+FE0F	(6	(4)	6	<u>©</u>	((0	(a)	_	_	_	_	woman raising hand			

Representação de dados: cores

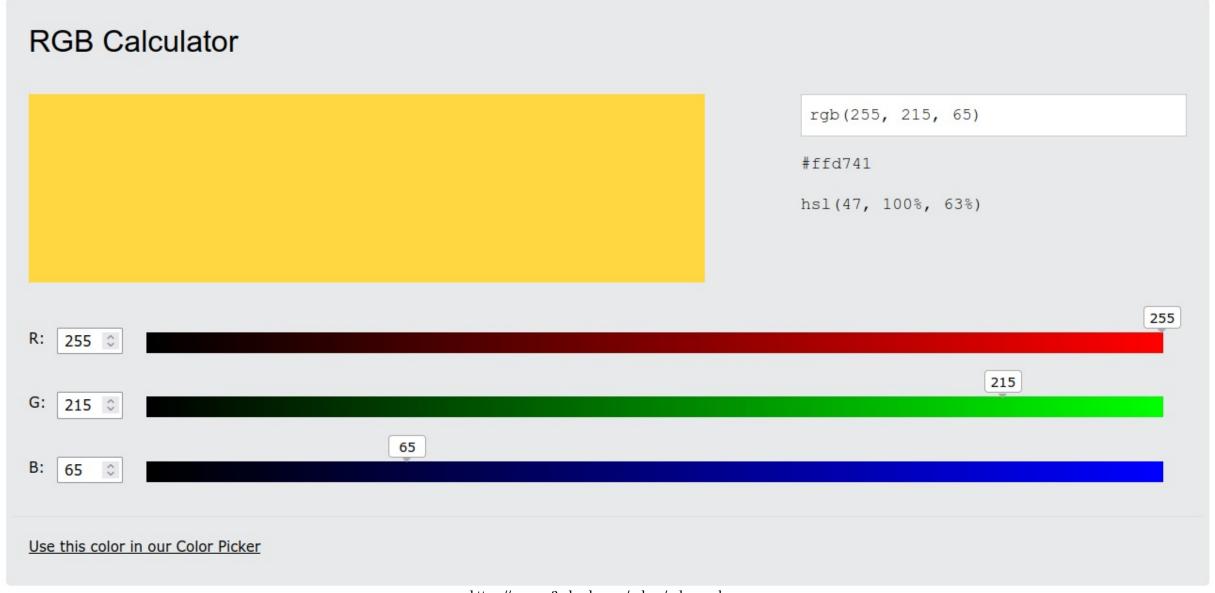

Monitor

Impressão

Representação de cor: RGB (red-green-blue)


Para representar as cores em um monitor, padronizou-se que a cor de cada pixel da tela é determinada por 24 bits (3 Bytes):

- R: a quantidade de vermelho (de 0 a 255)
- G: a quantidade de verde (de 0 a 255)
- B: a quantidade de azul (de 0 a 255)

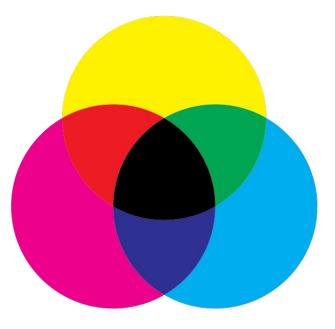


É um modelo aditivo, onde raios de luz de diferentes cores são sobrepostos (somados) para dar o resultado final.

- 0: ausência da cor
- 255: máximo da cor

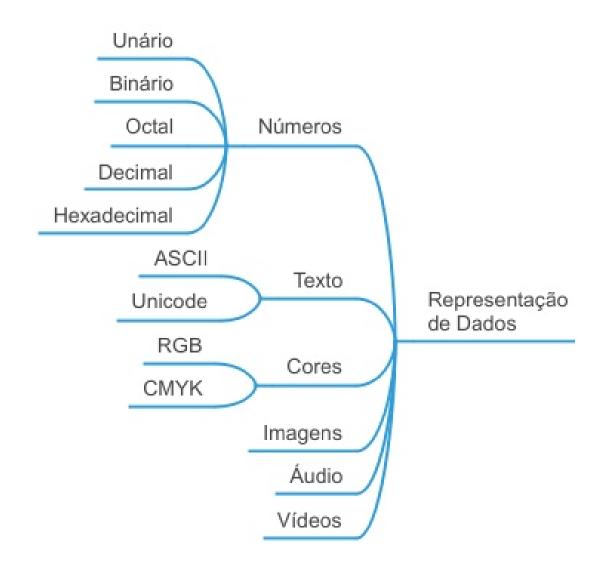
Representação de cor: RGB (red-green-blue)

https://www.w3schools.com/colors/colors_rgb.asp


Representação de cor: CMYK (cyan-magenta-yellow-black)

Para representar as cores impressas, padronizou-se que a cor de cada ponto no papel é determinada por 4 cores:

- Ciano
- Magenta
- Amarelo
- Preto


É um modelo subtrativo pois as tintas "subtraem" as cores vermelha, verde e azul, da luz branca que seria refletida pelo papel.

- Luz branca menos vermelho = ciano
- Luz branca menos verde = magenta
- Luz branca menos azul = amarelo

Youssef Abdelhamed, na Wikipedia (https://en.wikipedia.org/wiki/File:CMYK color model.svg)

Representação de dados: imagens

Fotos

Resolução, profundidade e tamanho

Compressão

- com perda
- sem perda

Padrões:

- BMP
- JPEG

- ...

"Enhance!"

Como representar uma fotografia?

Jon Sullivan, na Wikipedia (https://en.wikipedia.org/wiki/File:Barns_grand_tetons.jpg)

Como representar uma fotografia?

 $\label{lem:mikelo24} Mikelo24, na Wikipedia \\ (https://en.wikipedia.org/wiki/File:Barn_grand_tetons_rgb_separation.jpg)$

Armazenando a quantidade de vermelho, verde e azul (RGB) de cada pixel da imagem.

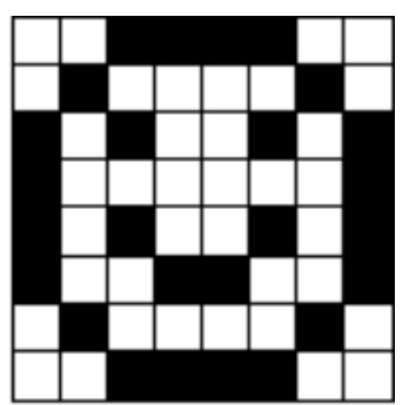
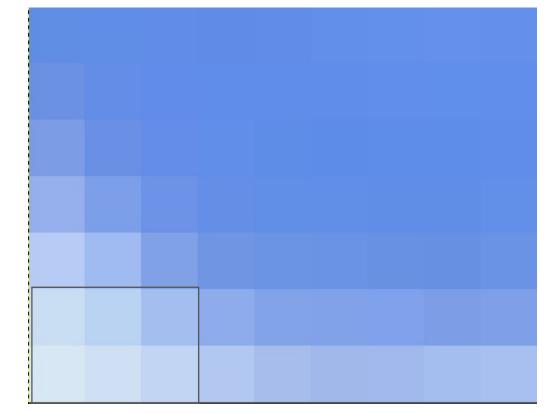



Imagem: CS50 Lecture 0 (https://cdn.cs50.net/2022/fall/lectures/0/lecture0.pdf)

Como representar uma fotografia? um exemplo simples

Todas as imagens são retangulares, por natureza. Alguns pixels podem ser transparentes para dar a impressão de curvas mas, por fim, as imagens são retangulares.

A imagem abaixo, de 8x8 pixels, representa branco ou preto com apenas 1 bit. Uma maneira de representar essa imagem é um "mapa de bits", um bitmap:



Como representar uma fotografia? bitmaps

Microsoft, na Wikipedia (https://en.wikipedia.org/wiki/File:Bliss_(Windows_XP).png)

(78,86,95) (73,82,95) (64,74,93) (84,90,95) (81,87,96) (76,83,95)

01001110,01010110,01011111 01001001,01010010,01011111 01000000,01001010,01011101 01010100,01011010,01011111 01010001,01010111,01100000 01001100,01010011,01011111

Imagem: resolução, profundidade e tamanho

Jon Sullivan, na Wikipedia (https://en.wikipedia.org/wiki/File:Barns_grand_tetons.jpg)

Resolução: quantidade de pixels horizontais e verticais que a imagem possui.

Profundidade de cor: quantidade de bits utilizados para representar cada cor.

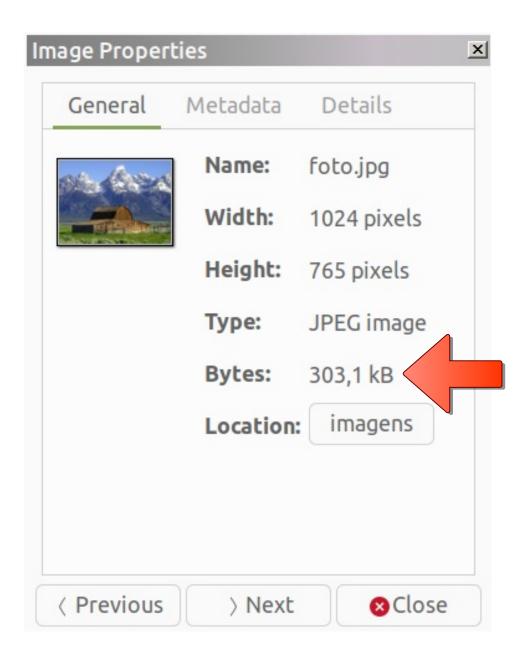
Foto: 1024 x 765 pixels

783.360 pixels no total

Tamanho: 783.360 pixels

24 bits por pixel

783.360 x 24 = 18.800.640 bits


= 2.350.080 Bytes

= 2.295 KiB

= 2,2 MiB

Imagem: compressão

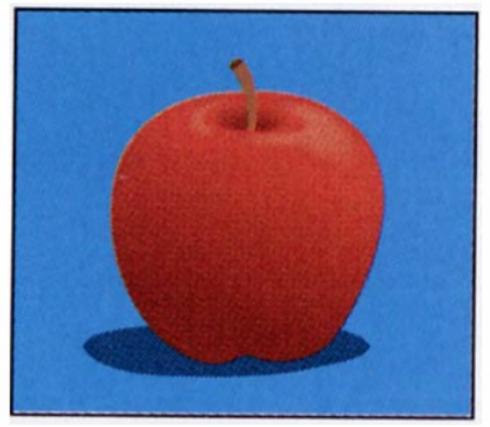

Calculamos 2.295 KiB, mas a imagem tem só 303 KiB. Por quê?

Imagem: compressão

Método para diminuir o tamanho do arquivo final. Pode ser feita basicamente de 2 modos:

- Com perda
- Sem perda

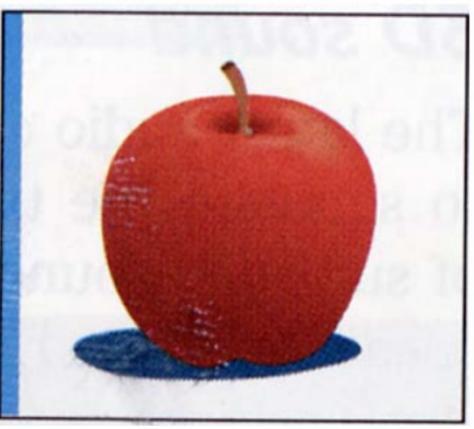


Imagem: CS50 Technology Lecture 3 (https://cdn.cs50.net/csciela/2017/fall/lectures/multimedia/multimedia.pdf)

Imagem: compressão

Método para diminuir o tamanho do arquivo final. Pode ser feita basicamente de 2 modos:

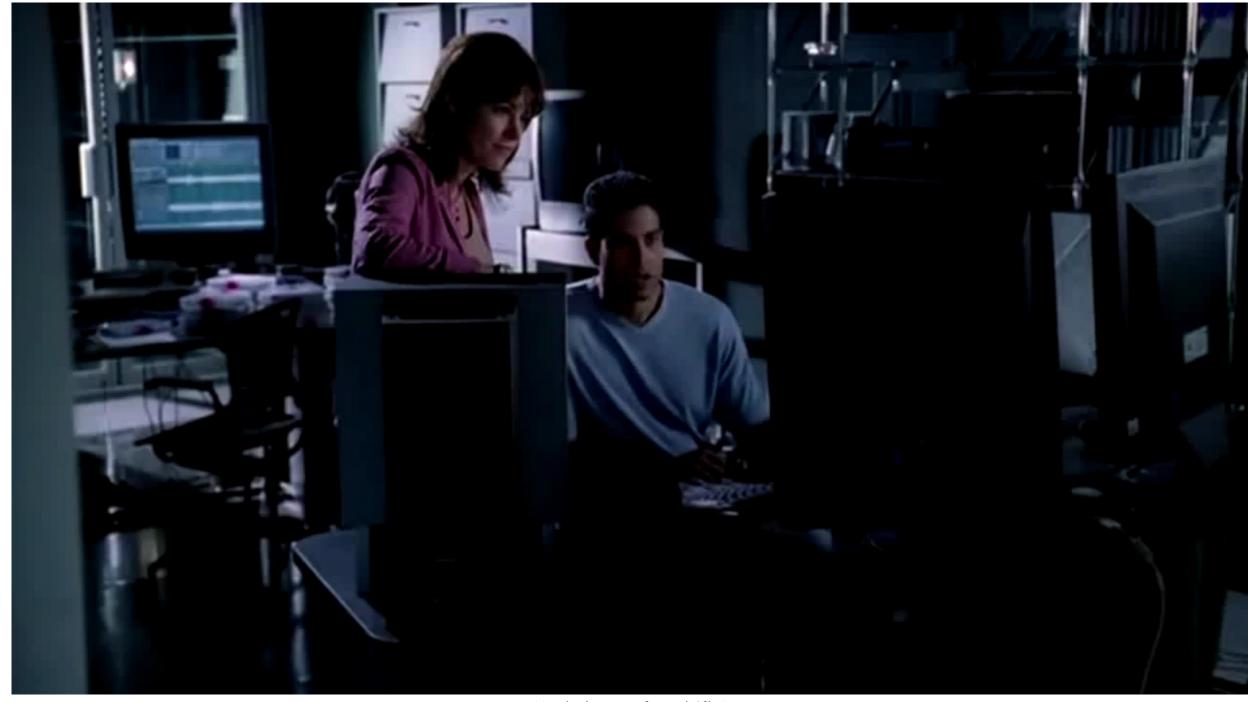
- Com perda
- Sem perda

Imagem: CS50 Technology Lecture 3 (https://cdn.cs50.net/cscie1a/2017/fall/lectures/multimedia/multimedia.pdf)

Imagem: CS50 Technology Lecture 3 (https://cdn.cs50.net/cscie1a/2017/fall/lectures/multimedia/multimedia.pdf)

Imagem: formatos de arquivos

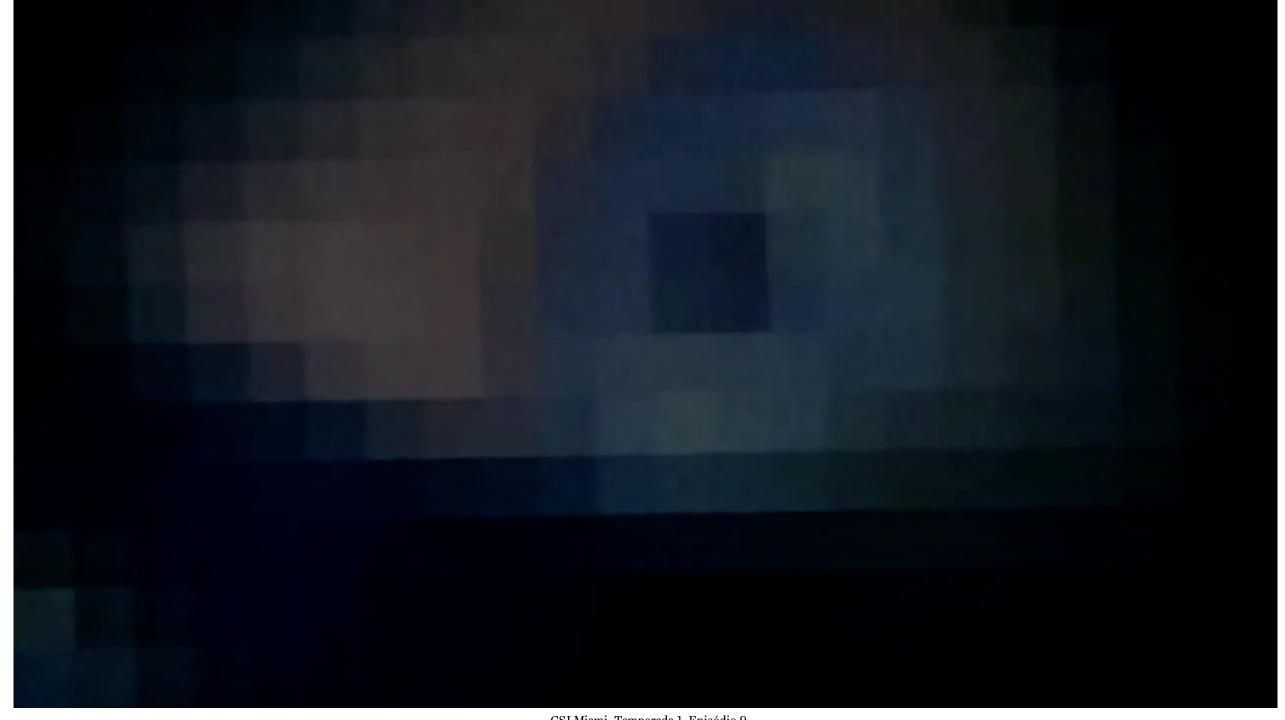
Existem diferentes formatos de arquivos de imagem, cada um armazena os bits de forma diferente, alguns com compressão (com ou sem perda) e outros sem compressão.


Formato de arquivo:

uma maneira de armazenar os bits de um arquivo no disco, de modo que certos softwares saibam como interpretar esses padrões de 0s e 1s.

Os principais formatos de arquivos para imagens são:

- BMP: bitmap
- GIF: para imagens com baixa qualidade (8 bits): icons, memes (gifs animados)
- -JPEG: para imagens com boa qualidade (24 bits), com perda
- PNG: para imagens com alta qualidade (24 bits): múltiplos usos


- ...

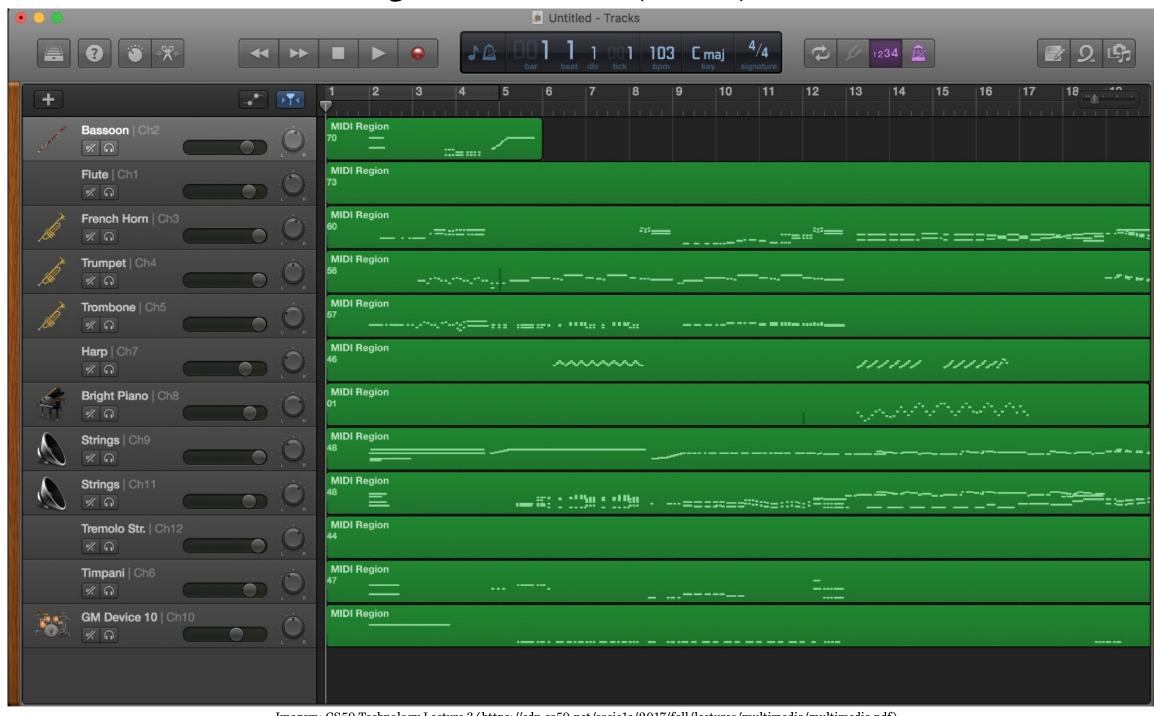
CSI Miami, Temporada 1, Episódio 9 Imagem: CS50 Technology Lecture 3 (https://cdn.cs50.net/cscie1a/2017/fall/lectures/multimedia/multimedia.pdf)

CSI Miami, Temporada 1, Episódio 9 Imagem: CS50 Technology Lecture 3 (https://cdn.cs50.net/csciela/2017/fall/lectures/multimedia/multimedia.pdf)

CSI Miami, Temporada 1, Episódio 9 Imagem: CS50 Technology Lecture 3 (https://cdn.cs50.net/cscie1a/2017/fall/lectures/multimedia/multimedia.pdf)

CSI Miami, Temporada 1, Episódio 9 Imagem: CS50 Technology Lecture 3 (https://cdn.cs50.net/cscie1a/2017/fall/lectures/multimedia/multimedia.pdf)

Representação de dados: áudio


Formatos de áudio

Representação do som

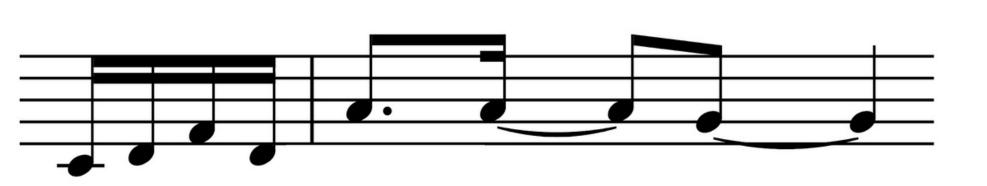
Qualidade de áudio

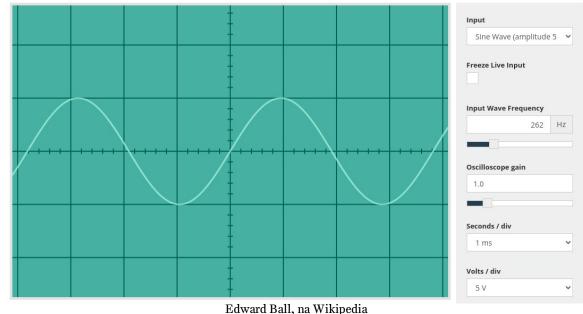
Formatos de arquivos de áudio: MIDI (sintetização)

Musical Instrument Digital Interface (MIDI)

Armazena as notas dos instrumentos (um ou vários).

O computador sintetiza o som, não é uma gravação.


Outros formatos de áudio (gravação)


- WAV: Waveform Audio File: armazena dados não comprimidos, em alta qualidade
- MP3: Motion Picture Experts Group Audio Level 3 Encoding áudio com compressão, tamanho reduzido, qualidade menor (descarta 0s e 1s que os humanos, em tese, não conseguem ouvir)
- AAC: Advanced Audio Coding: geralmente "dentro" de vídeos, Mac
- WMA: Windows Media Audio: em computadores Windows

- ...

Serviços de streaming: não transferem arquivos para você, enviam um fluxo (stream) de 0s e 1s que são "tocados" pelo seu computador.

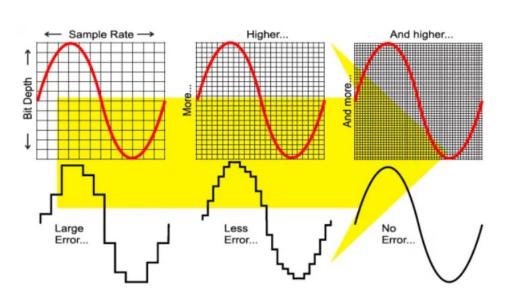
Como representar música? analógico para digital

(https://en.wikipedia.org/wiki/File:Middle_C,_or_262_hertz,_on_a_virtual_oscilloscope.png

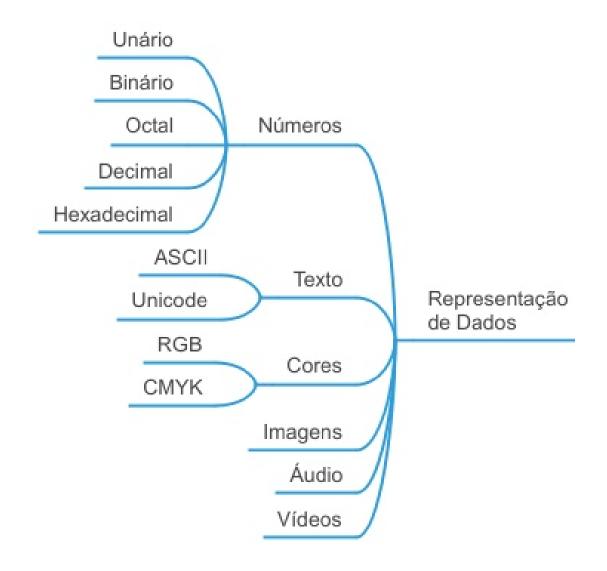
Ao gravarmos uma música, cada som (tom) é uma onda analógica sinusoidal que é caracterizada por:


- Duração: por quanto tempo a nota é ouvida
- Freqüência: sons mais graves ou mais agudos
- Intensidade: a altura do som, mais alto ou mais baixo
- Timbre: permite distinguir sons do mesmo tom ou nota que foram produzidos por fontes sonoras diferentes (piano e violino)

Qualidade da música gravada: analógico para digital


Pelo menos 2 parâmetros:

- Taxa de amostragem (sampling frequency):
 O número de vezes, por segundo, que o som é gravado
 (44.1 kHz, 48 kHz, 96 kHz, 192 kHz)
- Profundidade de bits (bit depth): Quantos bits são utilizados para registrar o som, em cada amostra (16, 24, 32).


Increasing Sample Rates

O tamanho do arquivo final será dado por: amostragem x profundidade x tempo

Representação de dados: vídeos

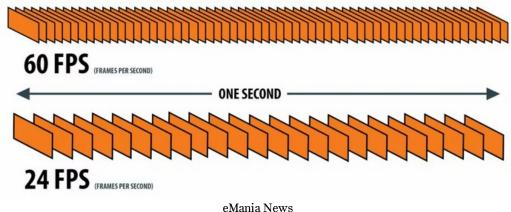
Arquivo de vídeo

Compressão de vídeo

Formatos de vídeo

O que é um arquivo de vídeo?

Basicamente: várias fotos/imagens em seqüência, exibidas rapidamente, dando a impressão de continuidade.

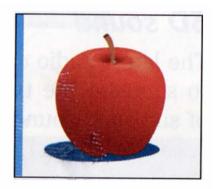


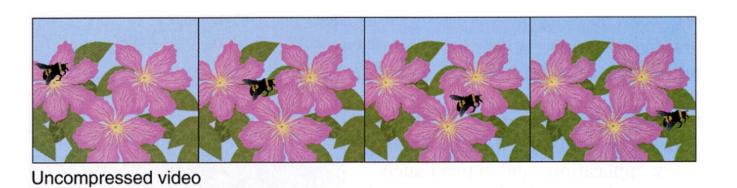
Andymation, no YouTube (https://www.youtube.com/watch?v=p3q9MM h-M)

Cinema: 24 frames/s (FPS)

YouTube: 30 ou 60 FPS

Games: 60, 120+ FPS


(https://blog.emania.com.br/videos-em-24fps-30fps-e-60fps-qual-taxa-de-quadros-usar/)


Compressão de vídeos

Não é um armazenamento simples de imagens, há muitos algoritmos matemáticos para compressão:

- intra-frame: como nas imagens
- inter-frame: armazena as diferenças entre frames adjacentes mantém "key frames"

Compressed video

Formatos de arquivos de vídeo

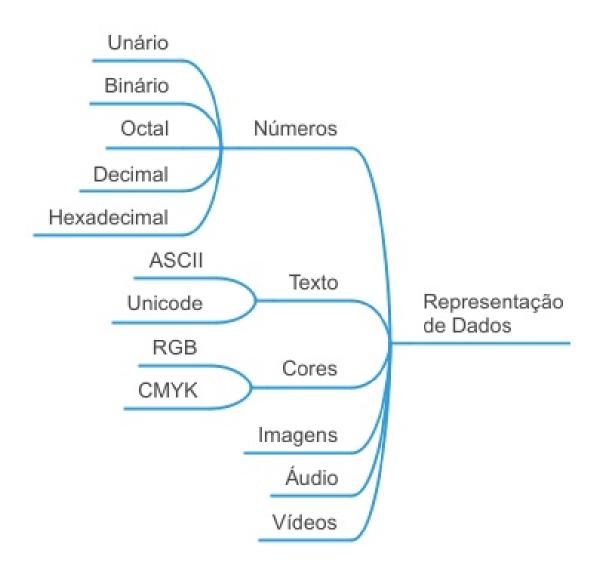
Um pouco mais complicado: imagem, som e outras coisas.

Containers:

- são "caixas" digitais nas quais são colocadas múltiplos tipos de dados
- podem incluir trilhas de áudio, vídeo, legendas, etc...
- principais containers:

AVI e DivX: populares no Windows

MP4: universal, browsers


Matroska: open source

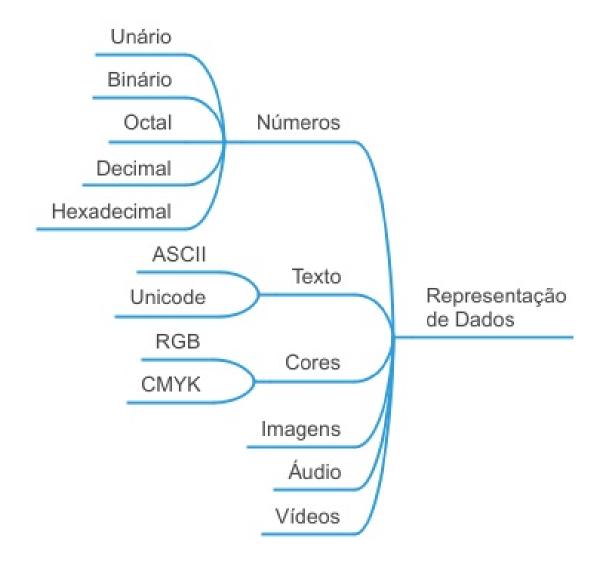
QuickTime: MacOS

Codecs:

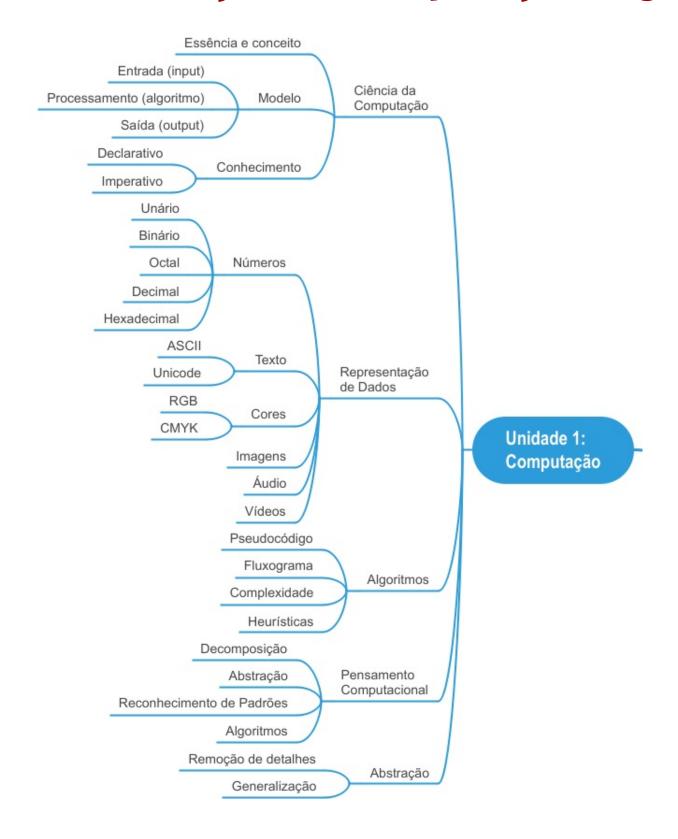
- diferentes modos de fazer o encoding dos dados
- para vídeo: H.264, MPEG-4, ...
- para áudio: AAC, MP3, ...

Representação de dados: tudo é binário!

Se tudo é binário, como diferenciar as coisas?



010011110110100100100001


010011110110100100100001

Pelo contexto! Todo padrão de bits tem múltiplas interpretações, não existe um modo fixo determinado para interpretar nenhum padrão de bits. Os softwares entendem o contexto dos dados e interpretam o padrão binário da forma correta: a interpretação correta é determinada apenas pelo uso dos bits de um modo específico. Isso é assim na linguagem natural: "Maria comeu a manga".

Resumo: 2º grande fundamento da computação: representação de dados

No próximo vídeo: o coração da computação, algoritmos!

